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A b stract

Software engineering design is a  vital component of modern industry, unfortunately, the 
processes involved are still poorly understood. This poses a m ajor problem for teachers 
of the subject, who are under constant pressure to improve the quality of education, 
but are unsure how to bring this about, or even how to detect such improvement. This 
thesis attem pts to  s ta rt the process of clarifying what we mean by “software engineering 
design” , and apply the insights gained to  the activity of curriculum design.

First, we establish a  m ethod for the research, by constructing a framework to  constrain 
and guide the process of seeking new insights. This leads to  a  decidedly eclectic approach 
to  the problem, as software engineering design is viewed, and reviewed, from a num ber 
of different perspectives. Next, these views are synthesised into a model of the software 
engineering design process, and new insights are sought to refine the model. The central 
theme of this model is the idea th a t the design process can be considered as a one 
of theory building. Finally, we bring this model into direct contact with the task of 
curriculum design, both in a  general sense, and also by providing illustrations of some of 
the consequences of its use.
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C h a p te r  1

T he Gift o f W onder
“In philosophy methods are unimportant; any method is legitimate i f  it leads 
to results capable o f being rationally discussed. What matters is not methods 
or techniques but a sensitivity to problems, and a consuming passion for  
them: or, as the Greeks said, the gift o f wonder”

Karl Popper

The research documented in this thesis has a num ber of unusual characteristics. These 
have arisen because the author, rather than  seeking out a suitable, if arbitrary, problem 
for a doctoral research programme, has set out to tackle a  problem which he was actually 
experiencing at a  personal level. This problem was how to improve liis teaching of 
software engineering design, and how to  help others to improve their teaching of the 
subject too. Magee sums up the ensuing situation very neatly, when he writes

“A consequence of always proceeding from problems which really are problems— 
problems which one actually has, and has grappled with—is, for oneself, th a t 
one wiU be committed to  one’s work; and for the work itself, th a t it will have 
what Existentialists call “authenticity” . It will not only be an intellectual 
interest but an emotional involvement, the meeting of a felt hum an need. 
Another consequence will be an unconcern for conventional distinctions be
tween subjects; all th a t m atters is th a t one should have an interesting problem 
and be trying to solve i t .” [Mag73, page 6 8 ]

The most significant consequence of deciding to  tackle such a problem has been the 
decision to  embrace eclecticism, reacting against the current trend in western culture of 
partitioning academic disciplines into smaller and smaller units. This decision was not 
made lightly, for it has far reaching consequences for the research program me, not least 
of which has been to  deprive the author of the benefit of precedent in selecting both  the 
research m ethod and also the style of thesis presentation. Another implication of the 
choice of problem is th a t it has led to  the researcher “being forced into philosophy by 
the pressure of non-philosophical problems” [Pop63, page 73].

The title  of the thesis also warrants some clarification, for the reader may be under 
the misapprehension th a t the dénouement of this work will be the presentation of a 
curriculum, neatly packaged and ready to  teach. This, as we will argue in Chapter Seven,
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is not a  sensible view of curriculum, and would not solve the problem we are setting out 
to tackle. The end product of this research is a resource th a t curriculum designers and 
teachers can use in carrying out their duties. This resource comprises the documented 
exploration of the nature of software engineering design, from a teacher’s perspective, 
together with the production of a  model around which future discussions, or the teaching 
process itself, can take place. It is the  task of presenting this exploration and model, 
and linking them  into existing bodies of knowledge, th a t constitutes the doctoral aspects 
of the research programme. No apology is made for the fact th a t very few answers 
are presented during the course of this discussion. We would argue th a t teachers must 
arrive at their own answers if their lessons are to  carry authority and commitment. The 
rôle of the discussions presented here is to  analyse questions, distilling them  into more 
precise forms th a t can be fruitfully discussed. This, as Dewey has said, is the true rôle 
of educational philosophy [Dew69].

It might be argued th a t an analysis of software engineering design should not be carried 
out by those currently working within the discipline of Computing, but by philosophers, 
psychologists and sociologists. It has indeed been argued, for example, th a t scientists 
should not attem pt to  discuss the processes of science, but should leave such discussions 
to philosophers of science [Fiii8 6 ]. Feuer presents a  discussion of the cases for and against 
this point of view [Feu69]. Suffice it to  say, however, th a t a t present there is no other 
discipline within which suitable discussion of the processes of software engineering is 
taking place. Moreover, due to the intim ate connections between the methods of the 
discipline and the tools, techniques and languages being developed within it, methodology 
is currently seen as a m ainstream  activity within software engineering: our methods are 
part of our technology. We would also argue th a t if Software Engineering aspires to 
becoming a genuine engineering profession, it cannot avoid the responsibility for self- 
analysis, as this is the route to  improvement in quality.

One result of the eclectic approach has been the emergence of striking similarities be
tween the processes of software design and curriculum design. In retrospect, this is not 
surprising as both activities share a num ber of common characteristics:

1. They are both concerned with the design of complex artifacts which are required 
to be adaptive in an environment of complex values.

2. The processes involved are usually carried out by teams of professionals without 
particularly autocratic management structures.

3. There is at present little scientific support for many of the decisions th a t need to 
be made.

4. Entities which can be classified as “information” and “knowledge” are manipu
lated and transm itted  within the final products, so both Education and Software 
Engineering use complex linguistic systems.

5. External pressures exist for change (such as the call for more effective methods
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of design or of teaching reading), but little time is made available for internal 
reflection, theory formation and experiment.

It is interesting to note th a t the production of software systems has been dubbed “sci
ence” , “engineering” , “architecture” and “craft” , but never education. Similarly, educa
tion is rarely viewed as an engineering discipline, in spite of the considerable am ount of 
design th a t takes place.

This insight has led to  a  num ber of dual applications of ideas, where a topic originally 
researched for its relevance to  the software design process has subsequently been applied 
to  curriculum design, and vice versa. The emergence of such meta-level discussions was 
predicted by Popper, whose philosophy suggests th a t a general investigation of scientific 
m atters, without imposition of the particular research methods associated with individual 
disciplines, is a possible approach to  the whole area of epistemology. The issues being 
investigated here are merely vehicles which serve as unusually well-structured, small- 
scale, models of more general problems involving knowledge. As the questions we are 
asking are at an unusually high level of abstraction, we should not be surprised if the 
answers display an unusually high degree of applicability. These ideas are not developed 
explicitly in this thesis, as they add a meta-level to  the discussion which is unnecessary for 
main the thrust of the arguments. We wiU be unable to  ignore some of the impUcations 
of this relationship, however, when we come to apply our results to  curriculum design 
later in the thesis.

In the rest of this chapter we wiU set the scene for the discussions to  foUow. We wiU sta rt 
by discussing the background to  the identified problem, highlighting some of the features 
th a t add to  the complexity of the task. We wiU then make the aims of the research more 
explicit. The research m ethod adopted to meet these aims wiU then be presented and 
discussed. FinaUy, a  brief overview of the structure of the rest of the document wiU be 
given.

1.1 B ackground to  th e  P rob lem

It has been suggested th a t the software industry worldwide is being hit by a “software 
crisis” . The manifestations of this crisis include the num ber of bugs found in systems 
after delivery, the missing of deadlines, the deUvery of software th a t simply does not 
work, and the problems of software maintenance. A hypothesis central to  this thesis is 
th a t it is counter-productive to  consider such a  state  of affairs as a “crisis” . A crisis 
is supposed to  be a decisive moment, a  turning point, not an ongoing state  of affairs. 
Moreover, a  crisis will usually be resolved by a rapid action, or sequence of actions. The 
adoption of the term  “crisis” by the software industry has lead to  a period of belief th a t 
all we need to do to  resolve the crisis is to  find the appropriate actions. Many such actions 
have been suggested in the past, but the plethora is not always helpful. As Riddle has 
observed:
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“So many people seem so certain about how better to  achieve the full potential 
of Software Engineering, th a t I feel more crippled than the blind m an who 
couldn’t identify the elephant.” [Rid85, page 1]

Amongst the panaceas th a t have been identified in recent years, are

Autom atic programming, whereby a machine takes over the  task of generating 
programs.

Prescriptive design m ethods, whereby the designer can be made to  function as a 
machine, following sets of rules which will lead to working systems.

Formal methods, which would malce the design of software more “scientific” and 
hence less fallible.

Tools, or factories, which would reduce the complexities of the task by orders of 
magnitude.

One of the m ajor assumptions of this thesis is th a t no such panacea can exist. Software 
Engineering is an essentially difficult task. The “crisis” is a reflection of the fact th a t 
the demands made upon the discipline have consistently exceeded the discipline’s ability 
to cope. This observation is not particularly helpful, however, unless some suggestions 
are made for improving the situation. The central tenet of this thesis is th a t proper 
education of software engineers would be of m ajor benefit, and th a t current educational 
practice in the area falls short of th a t which is possible and desirable.

The education of software engineers in the United Kingdom is currently hindered by a 
num ber of factors, in addition to  those hindering education as a  whole.

P ace  o f  D evelop m en t

Computing is a relatively new academic discipline. Computers, however, have found their 
way into every possible walk of life. It has proved impossible for the academic discipline 
to keep abreast of technological change, carry out the task of consolidation, and spend 
time reflecting on the nature of the subject itself. Most educators in the subject would 
readily admit th a t they have to  run just to  keep up with changing technology and external 
demands. Moreover, m any educators have not been formally educated in the discipline 
themselves, and so they have no fall-back position of preserving the traditional approach. 
As Popper has noted,

“.. .the  long term  ‘proper’ functioning of institutions depends mainly on such 
traditions. It is tradition which gives the persons (who come and go) th a t 
background and th a t certainty of purpose which resists corruption.” [Fop63, 
page 134]
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Ill the absence of these traditions, Computer Science has also failed to  adopt the estab
lished norms of science. Dijkstra identifies two causes of this phenomenon. The pioneers 
of the subject generally came from scientific backgrounds, but had never been trained 
to carry scientific thinking across subject boundaries, and “many of them  m ust have felt 
th a t scientific thought was a luxury th a t one could afford in the more established disci
plines, but not in the intellectual wilderness they now found themselves in.” The second 
cause is the large number of people who have entered the discipline from non-scientific 
backgrounds. “By their sheer numbers they form by themselves already an explanation 
for the phenomenon.” [Dij82, page 61]

If education is to play a m ajor rôle in overcoming the problems facing the software 
industry then it m ust be given time to  reflect and determine a strategy. This is not a 
requirement for software engineering education specifically, but for education as a whole. 
Brameld noted, in 1969, th a t

“education has suffered because it has not maintained adequate perspective.
It has not viewed itself from a distance, as it were, so th a t when a crisis 
occurs, . . . ,  it is unprepared to  do much more than go on the defensive with 
loud and unintelligible noises.” [Bra69, page 218]

Since this observation was made the situation appears to  have deteriorated. Even less 
time and resources are now available for “non-productive” activities such as discussing 
the curriculum. This criticism has been levelled against institutional education on many 
occasions, Cyert, for example, says

“Perhaps the most difficult organization to change in society is the university. 
Scratch a Professor from any discipline and you will receive a lecture on how 
business organizations, churches, governments etc., should reform. Yet uni
versities ignore the problems of education in their own institutions.” [CyeSO, 
page 7]

Discussion of software engineering education certainly does take place, but this concen
tra tes on features th a t can be considered fairly superficial. Considerable attention is paid 
to the transient details, such as which language should be used as a  vehicle for teaching 
programming, or which microprocessor is suitable for teaching students about computer 
architecture. The literature is primarily concerned with m atters of content (tha t is what 
should we teach), but without any real appeal to the deeper issues such as the value 
systems th a t should underpin the selection of content (tha t is why we should teach it). 
There is also very little informed debate as to  how we should teach the subject. There 
are, of course, exceptions such as Cohen’s paper on curriculum inversion [C0 I186], and 
the publication of the debate on teaching Computing sparked off by D ijkstra [Dij89], 
both of which do raise fundam ental issues.
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D em an d s o f  Indu stry

Industry has two types of expectation when recruiting graduates into Software Engineer
ing. F irst, it expects the recruits to  be immediately useful, knowledgeable in current 
technologies, and to  be able to  work as part of a  team . Second, it expects recruits to 
have a reasonable “useful life expectancy” , being able to  play increasingly im portant 
rôles in design teams for the duration of their careers. These expectations are certainly 
not mutually exclusive, and are no different from the expectations of other engineer
ing disciplines. A difference arises, however, in the balance of these requirements. A 
study of the appointments advertisements for software engineers reveals th a t employers 
are requiring knowledge of several current, but usually short-lived, m ethods, languages, 
platforms and tools. Similar advertisements for civil engineers, for example, are rarely 
so specific.

In attem pting to make their students generally employable, educators are faced with 
the task of covering several such technological ephemera. Unless a way can be found 
to turn  experience with these ephemera into transferable skills, then this requirement 
militates against the long term  effectiveness of the recruit. Very often, educators fall 
into the trap  of teaching a particular technique simply because industry currently uses 
it, ignoring the fact th a t industry is also saying th a t the technique is not very good. 
Often the approaches adopted are driven primarily by this aim, and are not always very 
constructive. To quote Mills,

“There is a real danger in over using soft topics and survey courses loaded 
with buzz words to provide near-term  job salability. But w ithout adequate 
technical foundations people will become dead-ended in mid-career, just when 
they are expected to  solve harder problems as individuals, as members or as 
managers, of team s.” [MilSOa, page 1161]

The problem may be ascribed in part to  a  tactical error on the part of educators. When 
institutions attem pt to  adapt to  changes in demand as quickly as possible, they lose the 
stability usually associated with the educational system. As Kozmetsky has observed, 
however, this may not be the best tactic. W hat is actually required is th a t the student 
can adapt, not the institution. If we can find ways of educating students so th a t they 
can adapt quickly in a  world of constant change then the institutions can adapt more 
slowly, thus maintaining their stability [Koz80, page 152].

P olitica l

Education has always been subjected to  various political forces, both  external and inter
nal. In general, there has been a large amount of inertia within the system to provide 
stabihty in the face of these pressures. Computing, however, has been subjected to  great 
pressures but has never been given the time to stabilise. These pressures are often not 
well thought out; they manifest themselves in slogans and buzz words which Com put

10
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ing departm ents are expected to  utilise: Information Technology, IKBS, AI, databases, 
Software Engineering, Information Systems, design methodologies, formal methods, real 
time systems, safety critical systems, . . . .  But exactly what do these term s mean? W hat 
is a “non-expert system”? W hat system is not a  “database”? Is a “formal m ethod” a 
method? Is an editor “safety critical” , given th a t it may be used to  write the code for 
nuclear reactor control systems? There is no time for such debates. Personal experience 
shows th a t raising such questions is likely to  lead to  rebukes such as “This is aU very 
interesting, but it is not getting us anywhere” , the implication being th a t adopting the 
terminology is in some sense progressive, but to what end? The professional educator 
has an obligation to  “submit slogans and rules of thumb to  critical analysis” [Tay69, 
page 28].

This problem is compounded by the fact th a t research funding is often available for 
investigating these “subjects” , so there is little incentive amongst academics for showing 
th a t the subjects may not be very appropriate ways of partitioning the discipline.

Another problem th a t has arisen for education generally is the imposition of a  producer- 
consumer model. Educational establishments are increasingly being seen as the providers 
of a service which m ust meet the needs of consumers. Unfortunately, the manner of fund
ing obscures the issue of who the consumer actually is. For schools, the parents are often 
referred to as consumers, but for higher education th a t rôle is variously adopted by the 
government, the funding agencies, the students, their parents, society a t large, potential 
employers, or professional bodies. For a  stable discipline, the effects of tliis a ttitude are 
reduced by inertia. Everyone “knows” what Physics is all about, so consumer pressure 
m ay produce changes over time, but not dram atic ones. For Computing, however, the 
pressures can be catastrophic, leading to  gross inconsistencies. Rather than  the discipline 
converging to  a stable sta te  as time goes on, it could diverge and become inherently un
stable. Software engineers know the dangers of applying patches to  systems they do not 
fully understand in order to  meet changes in requirements; unfortunately they persist in 
patching the curriculum in just this fashion. Blind acceptance of a  producer-consumer 
model, coupled with the cultural acceptance of the slogan “the customer is always right” , 
could destroy the discipline. The educator m ust accept responsibility as a  professional, 
and be prepared to take informed decisions based on wider issues than  this. Failure to 
do so will make the teacher little more than  an educational technician, and remove all 
claim to professional status.

1.2 T h e R esearch  A im s

The prim ary aim of this research is to  improve the quality of software engineering edu
cation and hence to improve the quality of software systems being produced in industry. 
An assumption th a t is made in meeting this aim is th a t a deeper understanding of the 
software design process will place the educator in a better position to bring this about, 
by facilitating curriculum design in the widest sense. Thus our prim ary aim can be met

11
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by helping the educator to  reach such a deeper understanding.

We would argue th a t this cannot be achieved simply by presenting a neatly packaged 
description of the system design process, supported by elegant argum ents, for this wiU 
not necessarily increase understanding. Neatly packaged ideas tend to  be accepted on 
authority, or ignored in their totaUity, they do not provoke the reader sufficiently to 
promote deeper understanding, for they do not involve the reader sufficiently in the 
process. Our aim, therefore, m ust be to provoke the readers into challenging their existing 
constructs by raising questions and viewing issues from unusual angles. We will offer 
suggestions for ways the system design process can be construed, but this will be done 
in the fuU knowledge and expectation th a t they will be rejected.

To assist the reader, however, we m ust provide the necessary framework for exploration 
to take place, so th a t challenges are not presented as a number of ad hoc questions, but 
through a structured analysis of the problem. This gives rise to  three subsidiary aims of 
the research:

1 . To develop a framework for the discussion of the software engineering design pro
cess.

2. To use this framework for the development of a model of the design process th a t 
can be used to discuss curriculum issues.

3. To illustrate how the increased understanding reached through these discussions 
can be translated into action through curriculum design.

It is im portant to realise th a t we are not proposing the framework, or the resulting model, 
as “right” or “true” . We are adopting Bacon’s maxim th a t “T ruth  emerges more readily 
from errors than  from chaos” , so we are prepared to make mistakes in imposing structure, 
for a t least then they can be recognised as such. Indeed, we anticipate th a t it is primarily 
through disagreeing with the ideas put forward in this thesis, including objections to  the 
choice of framework, th a t the aim of increasing the reader’s understanding will be met. 
We should also stress th a t there is no intention of arriving at a set of axioms from which 
to deduce a curriculum. As Hirst has observed, discussion can only serve to inform and 
guide the curriculum design process, not to  define it [Hir69, pages 178-183].

Typical of the sort of issues th a t our analysis wiU cause us to  consider is what we really 
mean by a number of terms and slogans. W hat exactly do we mean when we say th a t 
“functional specifications should sta te  what a system is to  do, not how it is to  do i t”? Is 
there any substance to the debate th a t takes place regarding the teaching of “theoretical” 
versus “practical” skills? We will also consider the rôle of issues such as “m ethods” and 
“formalisation” in the system design process, and the implications of our discussions for 
how such topics should be presented in the curriculum.

Although it is not an aim of this research, the discussion carried out may also prove 
useful to those charged with the task of developing design m ethods and CASE tools, for

12
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research in these areas has identified a set of questions th a t need to  be addressed which 
are similar to  those arising from our problem [Tnl87].

1.3 R esearch  M eth od

The problem being addressed is highly complex, and it was clear from the outset th a t 
no existing research programme would be found upon which to  build. In particular, no 
established research m ethod would suffice to  tackle the problem, for the issues are largely 
technological, and, as Rapp has said,

. .technology has by no means yet received the attention in philosophical 
literature which is commensurate with its actual significance. . . .  As a con
sequence, there exists no generally accepted theoretical frame of reference or 
inventory of methodological tools to  which one can resort in any particular 
investigation.” [Rap81, pages 19-20].

The fact tha t modern technological problems are giving rise to philosophical issues tha t 
require a  new approach for their exploration has also been noted by Lenk and Ropohl, 
who write

“Philosophy has to  accept the challenge of interdisciplinary efforts . .  .I t has 
to step out of the ivory tower of restricted and strictly academic philosophy.” 
[LR79, page 47].

Tills research is in no way “scientific” , in the traditional sense of the term . There is no 
attem pt to adopt a process of conjecture followed by empirical refutation, for example. 
Such an approach necessarily invokes simplifications of the problem domain, which are 
never arbitrary, but arise naturally out of the problems being addressed. It is the analysis 
necessary to identify these sorts of simplifications th a t is being carried out in this research 
programme.

There have been attem pts to study very simple problems of software engineering educa
tion scientifically, notably the ways in which people learn to  program  effectively [SI8 6 ], 
and some tentative results from these studies have been incorporated into this research. 
In general, however, the number of assumptions th a t are made in such studies (such as 
equating “programming” with “procedural programming in the small” , and “effective 
programming” with “running program s”) limits the applicability of these results. Sim
ilarly, there have been some investigations carried out into how students learn. Most 
research into these areas has been limited to  young children, however, and little seems to 
have been done in relation to  students in higher education, or adults. This is changing, 
and cognitive science is starting to  turn  its attention to areas more pertinent to  this re
search programme. If cognitive science develops into a body of knowledge th a t contains 
really useful results, then clearly we m ust be prepared to  utilise them . We cannot assume 
th a t education will always remain “safe from scientific solution” [Bro69, page 117].
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The approach adopted here is more like the philosophical discussion th a t takes place 
in the pre-scientific phase of any discipline. The aim is to  clarify the problems to  be 
discussed scientifically, both  those of Software Engineering, and also those of Software 
Engineering education, and to  seek some unification of ideas upon which a curriculum 
can be constructed. Modern views of science frequently accept th a t this is a valid stage 
of science, and not “pre-scientific” . Dye, for example, says th a t

“The most creative part of enquiry seems to  reside largely in generating 
the right questions. The question is the elemental, indispensable, scientific 
instrum ent.” [Dye8 6 , Page 103]

This corresponds to  the analytical and speculative modes of philosophy identified by 
Kneller [Kne71], and is metaphysical in the sense of establishing a framework of models 
within which analytical theories are expected to develop. The need for such pre-scientific 
stages is discussed in [Hir69, page 185] and [Asi74]. As Ducasse has observed, however, 
this philosophical reflection is not being carried out for its own sake, nor as a  m atter of 
personal choice; it is something th a t is forced upon any person facing “practical problems 
of a certain type” [Duc69, page 169].

The realisation th a t pre-scientific analysis leads us into philosophical investigations is of 
little help in identifying a m ethod, however, for as Popper has observed,

“Philosophers are as free as others to  use any method in research. There is 
no method ■peculiar to philosophy^ [Pop59, page 15]

The adopted method is essentially th a t recommended by Feuer for educational m atters:

“Are there any methods of philosophy other than  being most honest with 
oneself concerning one’s spontaneous, uncoerced beliefs? And don’t we reject 
doctrines because we feel behind the facade of pedantic profession a certain 
dishonesty?” [Feu69, page 40]

Care m ust be taken not to over-react, however. It is neither practical or sensible to 
question everything we do, for this too would allow us to escape from tackling the really 
hard issues of Software Engineering education. Poincare makes this point most forcibly:

“To doubt everything and to  believe everything are two equally convenient 
solutions; each saves us from thinking.” [Poil3, page 37]

It is not the questioning th a t is im portant per se, but the rational processes th a t lead 
to the questions and the answers. The questions m ust be clearly posed, and the answers 
critically analysed. Even some seemingly pointless questions can serve to  increase our 
understanding of the world. A careful study of Zeno’s paradoxes, for example, leads 
to some significant insights into the nature of space, time and motion, even though the 
paradoxes may seem esoteric and artificial.
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A rationalisation of the m ethod actually adopted, and it can be no more than  tha t 
for no clear methodology existed at the outset of the project, is as follows. F irst, an 
investigation into the nature of software engineering design was carried out in the light 
of a num ber of existing bodies of knowledge. The original intention had been to s ta rt 
with the philosophy of engineering, but a survey of the literature showed th a t no such 
thing existed, so the philosophy of science was chosen instead. In retrospect, this proved 
to  be a very fortunate accident. The design process was also considered in the light of a 
num ber of other bodies of knowledge, including the (embryonic) philosophy of technology, 
the psychology of problem solving, and the theory of discourse. As a result of these initial 
explorations, a model of the software design process was developed. The model gave rise 
to a number of issues th a t required clarification, which in tu rn  led to a  refinement of the 
model. Bringing this model into contact with the task of curriculum design requires the 
adoption of a philosophy of education, and also discussion of some aspects of learning 
theory. It was obvious by this stage in the proceedings th a t learning theory also has 
a rôle to play in our discussion of the system design process, so one particular theory 
was explored to broaden our discussion, and also to  provide a bridge to examples of 
curriculum design.

Alongside the development of the model, use was made of the understanding being 
gained by the analysis to  carry out a  number of curriculum design activities. These 
were not “scientific” , controlled, experiments, but they allow discussion of some possible 
interpretations of our model in term s of practical teaching activities.

1.4 P resen ta tio n  o f  th e  R esearch  R esu lts

The nature of this research programme poses some interesting problems in finding a 
suitable way to present the results. Most academic disciplines have developed specific 
styles for the publication of its literature, and the wise doctoral student conforms to  these 
norms. Moreover, the end product of most research programmes is a  set of conclusions, 
and the logic th a t is used to support and justify these conclusions can also be used 
to provide a structuring mechanism for the presentation of the results. This research, 
however, has been eclectic, and its end point is not a set of conclusions in the traditional 
sense, but the presentation of an exploration.

The main th rust of the research has been philosophical, but the styles th a t are often 
adopted for presenting the results of philosophical enquiry are not necessarily appropri
ate for our purposes^. The motivation for this research dictates th a t the thesis m ust be 
accessible to  the software engineering education community. Educational practitioners 
find little of value in an academic philosophical approach consisting of “stories about 
philosophers, and ghosts from a philosophical cemetery” [New69, pp 165-167], and nei
ther do engineers [Asi74, page 152]. The style we have adopted for the presentation of

^Indeed, many philosophers question the suitability of these presentation styles for the purposes of 
communication with other philosophers.
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results can best be described as a  practical philosophical one.

We s ta rt off in Chapter Two by considering a fairly specific, if complex, question: “in 
what sense is software engineering a scientific enterprise”? This question is focussed by 
Popper’s philosophy of science, and then broadened by a discussion of three pieces from 
the Computing literature which have a direct contribution to  make. This starting  point 
is too restricted, however, to  support the development of our model, so in Chapter Three 
we widen this base by considering software engineering as a  technological activity, then 
as a problem solving activity, and finally as a  process of discourse.

Chapters Two and Three are primarily resources th a t are drawn upon in the development 
of our model of software engineering design, providing insights and terminology th a t 
prove useful in tliis process. The construction of the model begins in Chapter Four, 
where the view of software design as a theory building process is presented and developed. 
This model gives rise to  the need to refine two key concepts: theories and methods. This 
refinement is undertaken in Chapters Five and Six.

One aspect of the model, how the individual builds theories initially, shares a  common 
theme with the issue of how students learn, for both can be considered to  raise the 
question of how people construe themselves, and the world about them . This is clearly 
a complicated question, and it is far beyond the scope of this research programme to 
provide an answer, but in Chapter Seven Kelly’s Personal Construct Theory is presented 
and discussed as a candidate framework within which the question can be addressed. This 
allows us to build links between our model and the teaching process, so th a t we have 
sufficient context to discuss some examples of the application of our model to  practical 
curriculum design. Chapter Eight briefly discusses the application of this exploration, 
and describes some of the curriculum developments th a t the author has undertaken 
during the la tte r stages of this research.

Chapter Nine comprises concluding comments on the research programme, including a 
discussion of how well the aims have been met and observations on the research method. 
It also highlights future research th a t arises naturally out of this exploration.

A number of issues raised by this research have led to conference papers and publications 
available elsewhere. Appendix A contains a list of these, together with a  brief description 
of the rôle they have played in meeting the aims of the research programme.
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C h a p ter  2

C om puting as a Science
“Science is nothing more but trained and organised common sense, differing 

from  the latter only as a veteran may differ from a raw recruit: and its 
methods differ from those o f common sense only as far as a guardsman’s cut 
and thrust differ ft'om the manner in which a savage wields his club”

Thomas Huxley

In this chapter a discussion of the question “In what senses is Software Engineering a 
Scientific Discipline” is set out. This question is im portant not because it helps us to 
classify academic disciplines but because it forces us to  evaluate aspects of the discipline 
within a readily available body of knowledge, the Philosophy of Science.

This Philosophy of Science, of course, does not describe science but discusses it, and 
proposes a  number of conflicting views on different aspects of the subject. It is not 
feasible or sensible to  utilise all of these views in our discussion, so one particular view 
has been selected as a starting point.

Two principal criteria were used for the selection of a suitable view:-

1. The view selected m ust be m ature enough to  form a well-documented, stable, basis 
for the intended purpose. This is easy to  meet, as a large num ber of philosophies 
of science have been proposed, and criticised, and a wealth of excellent, readily 
available, literature exists.

2. The view selected must still be progressive, in the sense th a t philosophers are still 
bothering to debate and criticise it as a candidate explanation. This excludes 
philosophies th a t have been found to  be uninteresting because they can be refuted 
too easily, and also the classic philosophies, which, although still widely discussed 
for historical interest and because of the foundation they provide, are no longer 
generally held as explanations of scientific progress. This criterion is rather harder 
to  satisfy, and perhaps needs some justification. Strictly, there is no reason why 
a classic view of science, such as P la to ’s or Aristotle’s, should not be adopted. 
The danger in this, however, is th a t the discussion of Software Engineering turns 
into a thinly disguised evaluation and refutation of the philosophy itself, rather 
than  a constructive analysis of the particular discipline within the given framework.
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There is also the worry th a t a discussion framed in such term s could lack credibility 
among practitioners of software engineering education: such a reaction would be 
ill-founded, of course, but likely none the less.

The philosophy chosen as a  starting  point for the discussion is th a t of Karl Popper. In 
subsequent chapters, discussions will be broadened to  include additional views as the 
need arises. An uncritical exposition of Popper’s philosophy is presented in this chapter, 
for it is not im portant th a t it should be “true” , only th a t it provides a good starting 
point for the discussions to  follow.

This chapter could be viewed as setting the scene for a  demarcation between Software 
Engineering and Computer Science. This is certainly not its intention, however, and 
two reasons can be given why any such demarcation, drawn as a  side effect, may be 
detrimental.

1 . The discipline of Computing has been saddled with the term s “software engineer
ing” and “computer science” . Any attem pt to  “define” these term s is a nominalist 
exercise th a t could have far-reaching consequences but little obvious merit. Such 
attem pts th a t have been made in the past often seem politically m otivated, rather 
than  constructive (for example, departm ental empire building, the  partitioning of 
research funds, marketing advantages, and so on). The view adopted here is th a t if, 
as a result of a deeper understanding of the discipline of Computing, two disciplines 
emerge called “Software Engineering” and“ Computer Science” then this is natural 
evolution, and a discussion of the results will be warranted : consideration of the 
terms simply because they currently exist is fruitless, and potentially dangerous. 
As Popper says,

“Disciplines are distinguished partly for historical reasons and reasons 
of adm inistrative convenience (such as the organisation of teaching and 
of appointm ent), and partly because the theories which we construct to 
solve our problems have a tendency to  grow into unified systems. But 
aU of this classification is a  comparatively unim portant and superficial 
affair.” [Pop63, page 67].

We shall follow this lead, “adopt the current lack of respect for etymology and go 
on to  more serious things” [Bun74, page 19].

2. The traditional distinction between science and engineering is one of purpose 
[Rap74, page 94]. Science is m otivated by a goal of increasing understanding, 
engineering by a goal of production [Sko72, page 43]. The link between the two is 
th a t the theories produced by scientists are utilised by engineers [Fei72, page 33]. 
If one adopts the view th a t the products of Software Engineering (i.e. software 
systems) are actually theories, in some sense, then this distinction is clearly not 
satisfactory. It may well be the case th a t an investigation of software engineering 
design will deepen our understanding of the relationship between the activities of 
science and engineering, which is more fruitful than  classification for its own sake.
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Support for the view th a t Computer Science and Software Engineering are too close to 
separate usefully for the purpose of curriculum design is provided by Denning, who writes 
tha t

“In the core m aterial, there is no fundam ental difference between the two
fields.” [Den8 8 , page 41]

2.1 P o p p er ’s P h ilo so p h y  o f  S cience

It is im portant to  note th a t Popper is not playing nominalist games in his philosophy, tha t 
is, he is not attem pting to  define term s or to  answer the question “what is science?” , 
but to  explore the ways in which science is actually carried out. Lakatos sums up 
Popper’s view of science very succinctly when he states th a t it “can best be put in terms 
of ‘conventions’ or ‘rules’ governing the ‘game of science’ ” [Lak74, page 243]. This 
investigation naturally leads to  several subsidiary issues, some of wliich do require us to  
ask what we mean by certain term s, but these issues arise from the consideration of a 
particular problem. The idea th a t aU philosophical investigation should be motivated 
by practical problems, and th a t “philosophy” carried out as purely linguistic analysis, 
contrary to W ittgenstein, is both pointless and meaningless, is vital to  understanding 
aU Popper’s philosophy, including his philosophy of science. Indeed, much of Popper’s 
philosophy of science can be fuUy appreciated only in the context of his philosophy as a 
whole. Unfortunately, this hoUstic view cannot adequately be reflected in such a short 
summary of the principal features of his philosophy.

Although Popper makes no attem pt to define science, he does stress the importance of 
drawing a line of demarcation between scientific and metaphysical theories. He is at 
pains to  point out, however, th a t he is not foUowing Kant in equating the metaphysical 
with the meaningless, or suggesting th a t metaphysics is in some way inferior to  science. 
This is an im portant point to  note, because as we shaU see this line of demarcation wiU 
partition a scientific discipline itself into scientific and metaphysical pursuits.

The classical (non-Popperian) distinction between science and metaphysics hinges on 
the idea th a t science proceeds by observation of the real world and the discovery (by 
induction) of the laws, embodied in theories, governing nature, whereas metaphysics 
proceeds by pure thought. Conventionalists, such as Poincaré, developed the view th a t 
we impose these theories on nature, rather than  engaging in a  search for the inherent, 
God-given, rules. Under tliis interpretation, theories are not true or false, but useful or 
not useful in particular situations.

Popper seeks to m aintain the notion of tru th  in science, but to refute th a t of inductive 
proof. This he does by introducing the idea th a t theories are entirely man-made, in the 
sense th a t they are the products of intuition, possibly guided by history and observation, 
but th a t they can be shown to be false if predictions based on them  can be shown not to 
correspond with the facts. In this way he also removes the idea th a t there is one “true”
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theory (th a t is, the true essence of the subject) and allows for a multiplicity of theories, 
all of which ultimately may be shown to be false. He replaces the idea of a hypothesis 
th a t science seeks to  prove true, by th a t of a  hypothesis which science seeks to  prove 
false. The “tru th ” of a  theory can be nothing more a measure of the extent to  which 
science has attem pted, but failed, to  falsify the statem ents th a t follow deductively from 
it.

This approach is based on the idea th a t every theory contains universal statem ents, but 
th a t no num ber of individual observations

P{xi) A f  (%) A f (% )  •.

can ever be sufficient to  perm it the deduction of

Va;:

unless the domain of interest, T , is completely covered by a.’i . . Moreover,  if this 
ever happens, then the theory is of little interest, since it just records a number of 
observations. Popper claims th a t statem ents over such a restricted domain are not truly 
universal.

Although we are unable to  induce the tru th  of a  theory from any num ber of observations, 
we are able to infer its falsity from a single one. Popper assumes th a t a  first order logic 
is sufficient for such deductions. From a number of true statem ents we can deduce, using 
a suitable logic, another true statem ent. This property is usually called the transmission 
o f truth. Of course, we cannot conclude th a t a theory is true simply because we can 
deduce true things from it. However, if we can deduce things from a theory which we 
can show to be false, then we can assert the theory to be false. This property is usually 
called the retransmission o f falsity.

Scientific activities comprise, according to  Popper, just those activities for which such 
an approach is possible, and where a willingness to practice these activities is demon
strated. It thereby excludes aU forms of activity where statem ents are made which are 
not refutable, such as

• would-be sciences like astrology, where the predictions made are usually so vague 
th a t it is hard to decide if they have come true or not.

• pure m athematics, where “tru th ” is just a measure of internal consistency^, or 
provability in the case of constructive m athematics.

• activities based on “theories” which are held dogmatically, where observations 
which appear to  refute the theory are simply re-interpreted so they support it, (such 
as M arxism’s blind acceptance of Hegel’s philosophy), situations where term s are

 ̂Although Popper expresses this view quite strongly in his earlier work, he later complicates matters 
when he introduces his notion of the third world. This is discussed below.
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redefined in an ad hoc way to  exclude all refuting cases from the theory, or where
metaphysics is prior to  experience.

It m ust be stressed th a t Popper in no way denigrates such activities: it merely observes 
th a t they should not be considered scientific.

One very im portant corollary of this line of demarcation is th a t the methods of science, 
and any theories we may have regarding them , are not themselves generally amenable 
to the activity of science. This separation of the objects from the methods shows clearly 
th a t we m ust take care when using the term  "scientific" to establish which of its many 
senses we are invoking. For example, the term  “scientific m ethod” does not mean a 
method th a t can be studied scientifically, but a  m ethod th a t is used in a discipline where 
scientific theories are the norm.

Popper identifies several main thrusts to scientific activities based on this notion of 
refutation. F irst, various properties of the theory can be checked. In particular, we 
can ask whether a theory is (internally) consistent. If a theory allows the derivation 
of both P  and -iP , then it m ust be rejected, for P  , ->P h Q, regardless of the Q we 
choose. Clea.rly a Q th a t does not correspond with the facts is trivially found, and hence 
the theory is easily refuted. Similarly, we m ust reject as useless any theories which are 
tautologous, or self-fulfilling. Such a theory will merely tell us things about all possible 
worlds (in which our underlying logic holds), such as P  V ->P or P  P , and will add 
nothing to our understanding of the world: they are information free.

Second, we can compare each theory with other similar theories th a t exist. Not aU pairs 
of theories will be directly comparable, as they may make statem ents about different 
facets of the real world. For those th a t are comparable. Popper provides an opinion on 
possible metrics th a t can be used for selecting the better theory. Of particular interest 
is Popper’s claim th a t his view of science turns upside down the intuition th a t we should 
look for the most likely explanation of things. For him, the bolder a theory, the less likely 
it is, but also the more refutable it wiU be. Refutable theories are more credit-worthy 
than theories which are hard to refute, therefore we should be seeking theories which are 
less probable, rather than more probable. This seems to be using the term  “probable” 
in a rather unconventional way [Put74, page 224]. An im portant point to  note here, is 
th a t we must remain in the domain of observability: producing a theory for the orbits 
of planets based on the existence of some extra-terrestrial, undetectable, being might be 
an improbable theory, but it is not refutable (at this moment in time) and so is not an 
acceptable candidate as a scientific theory.

Following on from this idea, we can see th a t more general theories are to be considered 
more useful (in science) than less general. We can consider as a normal form for a 
theory T

Væ • P t { ^ )  Q t { ^ )

where P t {^) defines the domain of application of the theory and Qt {^) defines the
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conclusions th a t can be drawn. The theory expressed in normal form as

Va;* Qt'{ )̂

will be more general than  T  if

Va:  •  P t { x )  = >  P t *{^)

For example, if a theory allows us to  deduce th a t some property follows from the assertion 
th a t X  is a mammal, then the theory is clearly more general than  a similar theory th a t 
allows us to deduce the property only if x is a dog, for if x is a dog then x is also a 
mammal. T hat is,

V a; # dog{x) ==^ m am mal(x)

As well as generality, precision can be used for the comparison of similar theories. The 
theory th a t says more precisely what will happen is more useful than  the one th a t is less 
precise. The theory T", expressed in normal form as

V a; * .Px>i{x) = >

will be more precise than  T  if 

\f X $ ==^ Qt {^)

For example, eats{po 7'k chops) is more precise than eats{meat)^ since 

eats(pork chops) ==^ eats{meat)

We can thus form a lattice, using generality and precision as orderings on our theories. 
Figure 2.1 shows the lattice for the examples introduced.

Ti: All dogs eat meat

T3: All mammals eat meat T2: All dogs eat pork chops

T4: All mammals eat pork chops 

Figure 2.1: Lattice of Generalisation and Precision
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Ti is the least bold theory, and is hardest to refute. We need to  find at least one dog 
that does not eat meat. T2  is more precise, and hence easier to  refute than  Ti'. any 
pork-hating dog will do. T3 is more general than  Ti, any m eat-hating mammal will 
serve to refute it. T4  is the most general and the most precise. To refute it, any mammal 
th a t does not eat pork chops will do.

The third m ajor scientific activity we can engage in is to check our theories in some way 
with the “real” world. This is the central issue of debate for most of the philosophies 
of science, and there have been m any suggestions as to what it means for a theory to 
be “true” . The classical view was th a t a  true theory was a perfect discovery, from the 
world of forms, of the essence th a t God gave to  some object. A more modern view, th a t 
of the pragm atists, is th a t a theory is neither true of false, merely useful or not useful. 
Theories are not uncoverings of God’s laws, but m an’s successful attem pts to impose 
order on the real world. Another proposed view is th a t theories are m an made, but th a t 
they are true if they are consistent with the to ta lity  of existing knowledge, th a t is, with 
all other theories. Such a coherence theory of tru th  necessarily means th a t the “tru th ” 
m ust change as theories change. Popper prefers to dissolve this issue, by declaring tha t 
the tru th  of theories is not the real question, rather we should be concerned with the 
tru th  of the statem ents th a t they entail. He adopts a correspondence theory of tru th , 
tha t is, statem ents are true if they correspond with observable facts. This is not a new 
stance, but one th a t was largely discredited by the number of paradoxes th a t could be 
constructed by its adoption. Tarski, however, with his observation th a t we cannot discuss 
the meaning of terms in a language w ithout recourse to some meta-language, effectively 
rescues the correspondence theory from many of these criticisms [Tar56]. Thus we can 
say that

The statem ent P  is true if and only if P  corresponds to  the facts, 

where P  is the name of some statem ent in another language.

The acceptance of a correspondence theory of tru th  raises another im portant point, 
namely the objectivity of science. T hat is to  say, we want to  distinguish between

P  corresponds with the facts.

and

I believe (or I know) that P  corresponds with the facts.

Popper notes th a t objectivity is a methodological issue, and hence not itself a scientific 
concern. Methodology cannot be considered as a  scientific concern until we know how to 
make refutable statem ents about it. The current state of disciplines such as psychology, 
sociology and management is such th a t refutable statem ents about how individuals act 
are hard to lind^. It cannot become a scientific concern until psychology, for example.

^Popper originally stated this several decades ago, but there seems to be no reason to believe that 
the situation has changed much
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gives us the necessary framework to  analyse scientihcally statem ents about how people 
think and formulate theories.

In common with many other philosophers, Popper places a layer of indirection between 
the scientific theories and reality. This layer comprises statem ents about the real world 
th a t we will call observation reports. Popper says th a t objective statem ents about the 
real world m ust be ^Hnter-subjectively testable”. T ha t is to  say, they m ust be reflected by 
observation reports th a t are amenable to  inter-subjective criticism. In fact. Popper does 
not insist th a t these tests take place, just th a t they must be possible. This is the reason 
for requiring the property of repeatability for scientific experiments. We m ust be able to  
re-observe experimental results if we wish. Thus the decision to  accept an observation 
statem ent as “true” is another methodological concern: it is the decision not to  keep 
attem pting to  refute the observation by further investigation. Popper sums this up very 
elegantly when he says

“The empirical basis of objective science thus has nothing “absolute” about 
it. Science does not rest on solid bedrock. The bold structure of its theories 
rises, as it were, above a swamp. It is like a  building erected on piles. The 
piles are driven down from above into the swamp, but not down to any natural 
or “given” base; and if we stop driving the piles deeper, it is not because we 
have reached firm ground. We simply stop when we are satisfied th a t the 
piles are firm enough to carry the structure, at least for the tim e being.” 
[Pop59, page i l l ]

Popper’s philosophy is clearly methodological in the sense th a t it contains severe con
strain ts on the behaviour th a t he is prepared to  admit as scientific. The ideal of refuta
tion, for example, provides a  meta-methodological rule: No rule may protect statements 
from  being refxUed. His views on m ethod seem to  be summed up by his statem ent

“pronouncements of this theory [of method] are . . .  for the most part con
ventions of a fairly obvious kind. Profound tru ths are not to be expected of 
methodology.” [Pop59, page 54]

It has been largely left to  those following Popper, such as Kuhn, Lakatos and Feyerabend, 
to discuss the implications of his philosophy for method, in the sense of guidelines for 
scientific progress. He does, however, observe th a t

“If the m ethod of trial and error is developed more and more consciously, then 
it begins to  take on the characteristic features of a “scientific m ethod” . This 
“m ethod”  ̂ can briefly be described as follows. Faced with a certain problem, 
the scientist offers, tentatively, some sort of solution— a theory. This theory

^Popper’s Footnote: It is not a method in the sense that, if you practice it, you will succeed; or if you 
don’t succeed you can’t have practiced it; that is to say, it is not a definite way to results: a method in 
this sense does not exist.
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science accepts only provisionally, if a t all; and it is most characteristic of the 
scientific m ethod th a t scientists will spare no pains to  criticise and test the 
theory in question.” [Pop63, page 313]

Popper sees his m ethod of refutation as akin to  the process of natural selection: the 
“fittest” theories survive.

One of the few concessions to m ethod th a t Popper does appear to  make is the observation 
th a t, when a theory appears to  be refuted, we need ways of deciding how much of the 
theory is to  be rejected, or, indeed, if the theory can be protected in some way. Consider 
a set of assumptions a and some theoretical system T. If we consider the consequence 
closure of these as r ,  then our hypothesis H  for refutation can be expressed in the form

T = ^  II

If we observe ->11 then clearly our laws of logic allow us to infer -ir. As r  was a closure, 
however, we cannot infer what part of it is to be rejected. It would be methodologically 
unsound to reject all of r ,  and s ta rt again from scratch every time. It would, of course, 
be logically sound.

One approach might be to change our set of assumptions: this is often used as a way 
of propping up theories th a t are held dear, and Popper identifies this as, in general, 
undesirable. He does acknowledge th a t on occasions such a commitment to  a theory has 
proved well-founded, such as when Newtonian mechanics was defended in the light of the 
(apparent) refutation arising from the failure of Uranus to follow its predicted path. The 
introduction of an auxiliary hypothesis asserting the existence of an additional planet, 
Neptune, effectively rescued the theory. This defence is only acceptable as science because 
the existence of Neptune could itself give rise to  refutable predictions. The position of 
Neptune could be predicted to a  sufficiently small region of the space-time continuum 
th a t it was deemed possible to  search it exhaustively. Had the defence been the existence 
of some heavenly body whose location could not be predicted, then this would not have 
constituted scientific practice.

The alternative is to refute T , but do we need to refute all of T? Popper suggests, 
pre-empting Kuhn and Lakatos, th a t if we construct T  as an enrichment of some other 
theory, which has stood the test of time (tha t is, has been subjected to severe 
attem pts at refutation, but survived) then an obvious-place to  s ta rt is by assuming tha t 
the  extensions have been refuted rather than  the whole of T . Care needs to  be taken 
here with implicit assumptions, such as those embedded in the theories we are using for 
criticising our observation statem ents or those embedded in the notation we are using. 
In the physical sciences, for example, all measurements are taken indirectly, often using 
a complex theory of measurement.

In choosing between theories. Popper suggests a  number of factors th a t should be taken 
into account, including precision, generality, degree of detail, survival of tests, number 
of tests suggested, and degree of unification. Further discussion of these issues will
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be delayed until the chapters on methods and theories, where more concrete examples 
relevant to  computing can be given.

A particularly im portant question is the source of theories. For the inductivist, theories 
can be found lurking among the collection of observations th a t have been made. Popper 
refers to this as the bucket theory of knowledge [Pop72, pages 341-361]. The observations 
are made, stored, and then a theory emerges. He dismisses this out of hand, saying th a t 
it is nonsense to  suggest th a t observations can precede theory in this way. We cannot 
just “observe” but we have to  “observe something” .

He replaces the bucket theory with the searchlight theory [Pop72, pages 341-361]. We 
search out observations to  refute theories, or possibly to  provide psychological support 
th a t our theory can at least pass some tests. The searchlight is provided by the current 
theory. This view requires motivation for the search, of course, and this is provided 
by problem situations. In Popper’s philosophy, problems are the root not only for aU 
philosophical enquiry but also for aU scientific enquiry. His m ethod can be expressed 
rather simplistically as

P i ^  T T - ^  E E P 2

The initial problem. P i is investigated and gives rise to a tentative solution, P T , which 
win be a theory within which the problem can be solved. The scientific method is then 
applied to this solution, resulting in error elimination, EE, which in turn  leads to  new 
problems, P 2 . The problems themselves, however, are not theory free. They wiU be 
phrased in term s of existing theories. This raises the question of which comes first, the 
problem or the theory, but as Popper implies, this all happened long ago, so does it really 
m atter? AU problems tha t are expressed in current civilisations inherit a vast array of 
theories.

As to  the initial source of individual theories, Popper is unconcerned. These sources are 
in the second world (see below) and hence are the problem of psychologists. He does 
observe th a t intuitions undoubtedly have a rôle to play, but th a t we m ust not forget tha t 
these intuitions are likely to develop as a product of theories, so are not static during 
the solution of a particular problem.

The notion of refutation th a t Popper introduces for science potentially leaves m athe
matics on the non-scientihc side of the line. In his earlier works, Popper says this is 
correct; m athematics is a  metaphysical concern, but it does have a m ajor rôle to  play 
in science. M athem atical theories can be made (empirically) scientific by bringing them  
into contact with the real world, th a t is, by providing interpretations for their terms. 
At this point, says Popper, they cease to be m athem atical theories and become descrip
tive theories of the real world. It is here th a t Popper differs from the conventionalist: 
he asserts that such descriptive theories can now be refuted, as their logical status no 
longer protects them. Strictly, of course, it is the interpretation of the  theory th a t is 
being refuted: a theory can only be refuted as a  theory 0/ something. AU non-scientific 
theories have this potential (as science develops, statem ents often become refutable th a t
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could only be treated metaphysically before), but mathematics is especially useful. The 
nature of m athematics itself is such th a t it provides rich deductive systems th a t can aid 
in the process of refutation. The more th a t can be deduced within the theory, the more 
refutable it is, and hence the better the theory.

In his later work, however, Popper appears to  adopt a different a ttitude  to  reality, and 
hence to m athematics, th a t raises several questions regarding his earlier philosophy. 
Unfortunately, he does not review all his published works on other issues to accommodate 
this dram atic change, and so we are left guessing as to how he intends to answer these 
questions. The change involves the introduction of three worlds: the (first) natural 
world, the (second) world of ideas and thoughts private to individuals, and a third world 
of m an-made structures. In this third world reside, for example, m athem atics, theories, 
books of knowledge, and man-made physical objects. Such third world objects may have 
embodiments in both the first and second world, as well as being in the third world. 
Books, for example, have a physical form, and may also be conceptualised, as holistic 
entities, by individuals. Popper states th a t the true domain of interest of epistemology 
is this third world, and we should not get bogged down in trying to  understand the ways 
in which knowledge is stored, m anipulated and communicated by using the other worlds.

This third world, according to  Popper, is where a proper study of any discipline should 
occur. We should study the structures (such as theories) th a t are produced before we 
s ta rt to  ask how they might be arrived a t by using the second world processes. Further
more, this third world has assumed an autonomy of its own. We can now trea t third 
world objects in isolation from the processes th a t brought them  about. In particular, 
we can discover properties of these objects th a t we never knew they had: th a t is to  say, 
these objects can themselves be considered as amenable to scientific investigation. This 
idea is not new, and the potential dilemma it poses has been recognised by Euler, for 
example, when he writes

“As we m ust refer the numbers to  the pure intellect alone, we can hardly 
understand how observations and quasi-experiments can be of use in investi
gating the nature of the numbers. Yet, in fact, as I shall show there will be 
good reasons, the properties of the numbers known today have been mostly 
discovered by observation, and discovered long before their tru th  has been 
confirmed by rigid dem onstration.” cited in [P0 I6 8 , page 3]

Given, as a third world object, a formally expressed theory, we can ask whether term  
X is a deductive consequence of terms y and z. It may seem th a t Popper’s third world 
is similar to P la to ’s world of forms, with a separate existence th a t can be discovered. 
There is a m ajor difference, however: Popper’s world is not Divine but man-made. For 
this reason we m ust accept th a t it can be changed by men, and so we m ust reject all 
notions th a t the third world captures any eternal “tru th ” .

Our acceptance of the third world allows us to  modify somewhat Popper’s original state
m ent th a t mathematics is a metaphysical activity unless we are using a m athem atical
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theory to  describe the real world. We must now admit the possibility th a t a  m athem at
ical theory can be subjected to  scieiitihc analysis, thus giving rise to  more m athem atical 
meta-theories. These meta-theories are scientific, but the “reality” th a t they describe is 
not the natural world but other m athem atical objects in the th ird  world. It is this th a t 
allows a scientific treatm ent of conjectures regarding, for example, the theory of prime 
numbers.

We m ust now reconsider the whole idea of refutation, however, for it seems th a t such 
a “scientific” exploration might well yield not only a refutation of Euler’s conjecture, 
but also a “proof” . The solution to  this dilemma, which Popper does not appear to 
have discussed anywhere, is to  be found in the bedrock of m athem atical culture. To use 
Popper’s earlier analogy, as we seek to  drive the piles deeper and deeper we reach a layer 
of universal agreement upon which our deductive proof sits. This layer includes concepts 
such as orderings, which allow us to  construct proofs using m athem atical induction. 
These are, of course deductive in nature. Such proofs rest on the acceptance of a number 
of implicit theories. In proving

1 ^

for example, we assume the existence of integers with particular properties. Properties 
hke these have become such a central part of our third world th a t we cannot imagine them 
to be false, and so we proceed as if they are undoubtedly “true” . We should remember, 
of course, tha t this has not always been the case. The existence of the number 0, for 
example, was disputed for a  long tim e before it found its way into the collection of 
generally accepted third world objects, and “proofs” based on naive set theory were also 
accepted largely without question until quite recently (and in some quarters continue to 
be so).

The ultim ate example of this, of course, is the very logic itself th a t Popper is quite 
content to use for the purpose of deduction leading to refutation. This is itself a  third 
world object. Dare we allow the possibility of refuting it? If so, what possible logic do 
we use to do so? This is a very real problem which Popper has allowed to  slip in, but we 
can actually survive without an answer. We will just accept th a t certain m athem atical 
and logical foundations of our third world are to  be treated as not refutable, and revel 
in the fact th a t most of the  more advanced m athematical concepts we require can be 
constructed from these simpler foundations. This effectively overcomes the problems of 
language shift th a t accompany theory development, where term s take on new meanings 
as theories are developed. Terms such as “m atte r” and “energy” , for example, have quite 
different meanings before and after Einstein. In our Third World, we can usually give 
a formal semantics to our language, th a t is, we can define our term s using term s drawn 
from other established Third World objects. We can define relations, for example, in 
term s of sets.
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2.2 C om p u tin g  as Science: a R ev iew

It is currently considered good advertising copy to  apply the term  “science” , or “scien
tific” , to products th a t yon are trying to  sell, thus we have scientifically designed washing 
powders, toothpaste, m otor cars and electric razors. It is not surprising, therefore, th a t 
there has been a move in recent years to  portray  the production of software systems as 
scientific. There is a grave danger, however, th a t the term  is really being used to  mean 
“high quality” . If this is the case then asking the software industry to  become more 
scientific is actually just a thinly disguised request for it to  become “better” . Such a 
request is completely lacking in guidance, both as to how such improvements are to be 
brought about and also how to ascertain whether any improvement has actually taken 
place.

This section is an attem pt to view Computing as a scientific activity, as described by 
Popper. There is no a ttem pt, of course, to  answer the question “is Computing a sci
ence” , only to discuss it. If we manage to bring Computing into reasonable contact with 
Popper’s philosophy then we wiU have established a useful starting point for subsequent 
discussions. Areas of difficulty wiU have been identified for further analysis, which could 
lead to a refinement of our views of Computing or science. A few of these areas wiU be 
discussed in this thesis, as they are pertinent to the central pedagogical aim, but many 
more wiU be left as open research topics. If the contact can be made only by a series of 
totally unreasonable interpretations (such as might be found in asking the question “is an 
apple scientific”), then we m ust either look for an alternative, and more accommodating, 
philosophy of science, or accept th a t it is difficult to view Computing as a science.

The approach adopted is to  review three m ajor contributions to  the literature of Com
puting th a t seem to have particular relevance to  the question. These three works are 
very different in nature, allowing us to  explore different facets of the question.

1. Iloare’s “Programming: Sorcery or Science?” [Hoa84]: this paper addresses pro
gramming in a wide sense, and holds out the promise of a frontal attack on the 
problem being considered.

2. Cries’s “The Science of Program ming” [GriSl]: this book trea ts programming as 
the task of moving from a formal specification to code. It presents a number 
of principles th a t can be used and also discusses the technical details of proving 
programs correct.

3. N aur’s “Programming as Theory Building” [Nau85]: this paper also treats pro
gramming in a very wide sense, but uses a  more psychological view of theories.

“Program m ing: Sorcery or Science?” by Hoare

This paper [Hoa84] raises one im portant question regarding the literature of a scientific 
discipline: should the papers and books published themselves be scientific in the sense
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th a t they can be refuted? The answer assumed here is “no” , for otherwise all discussion o f 
science m ust either be detached from science or carried out in a  scientific manner. Great 
care m ust be taken if we accept this answer, however, in case we unconsciously open 
the fioodgates to such metaphysical writings at the expense of truly scientific literature. 
Care m ust also be taken to  ensure th a t the reader is aware of the ontological status of 
published papers, for otherwise results put forward may be given a status as part of 
the discipline’s scientific body of knowledge. This is unlikely to  present a  problem in 
established sciences, where there is little danger of confusing the discussion of how an 
experiment should be conducted with the report of its results. In computing, however, 
there are complications, such as the production of CASE tools, where there is a  risk of 
elevating discussion of how computing should be carried out into a  theoretical basis for 
such tools, and treating such a basis as scientific. Hoare’s paper is clearly metaphysical, 
in the sense tha t it is talking about the processes involved in programming, rather than 
talking about programs (or even programmers) in a scientific way.

Once the status of this paper has been noted, we can accept it as part of the scientific 
literature. It is a piece of persuasive discourse, the purpose of which is to  convert those 
who see programming as a black a rt to the point of view of those who believe th a t 
software production should be “based on underlying theories and follow the traditions 
of better-established engineering disciplines” (page 5). One remarkable fact about this 
paper is tha t Hoare manages to carry out the whole discussion w ithout any real reference 
to “science” . He seems to equate professional engineering practice (which he assumes as 
a  goal) with scientific practice, and in so doing answers the question in his title simply 
by definition. The rest of the paper is largely divorced from the title, being a discussion 
of the ways in which software development should proceed. We can, however, analyse 
some of the more relevant statem ents and see if they offer any insights into Computing 
as science.

Hoare says, for example,

“The chief programmer, like the architect, will s ta rt by discussing require
ments with his client. From education and experience, the programmer will 
be able to guide his client to an understanding of his true needs.” (page 8 )

This may well be an accurate reflection of what should happen, but it does little to 
convince the reader that programming is scientific. Architecture, particularly the mod
ern variety, is notorious for its highly subjective nature, and by introducing the client’s 
understanding into the picture, Hoare admits b latant psychologism, which Popper con
tinually sought to remove from the realms of science. Similarly, the term  “true needs” 
requires careful consideration. If we accept Popper’s view th a t observations are theory 
laden, then the discovery of needs can only be as “true” as the theories we used to search 
them out. Hoare seems to be setting the scene for absolute certitude in science, and 
hence in programming, by assuming th a t initial observations can be taken as “true” . In 
so doing, he is promising more than  either programming or science can deliver.
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Hoare goes on to  say th a t

“This activity will culminate in a complete, unambiguous, and provably 
consistent specification for the  entire end product. It will serve the same 
rôle as blueprints in engineering or scaled plans and elevations in architec
tu re .” (page 8 )

Not content with absolute tru th , Hoare now admits the whole truth! As Tarski has 
noted, however, relative completeness is a  more practical tool than  to ta l completeness. 
The latter, in logical term s, means th a t the maximal set of consistent conclusions can 
be drawn. Clearly it is relative completeness th a t Hoare intends: he wants to  be able 
to draw all consistent conclusions relevant to  the problem. Made explicit, the problem 
with this statem ent is manifest. W hat procedure can the programmer adopt th a t wiH 
guarantee discovery of a complete specification? In science it has long been accepted 
tha t such a procedure is impossible.

In similar vein we m ust ask what Hoare means by an “unambiguous specification” . He 
could be suggesting the use of a notation with an unambiguously par sable gram m ar, a 
fairly simple thing to  ensure. He could also be requiring a language with some universally 
acceptable semantics th a t can be interpreted in only one way (and he m ust accept the 
problem of subjective understanding, because of the psychologism he admits elsewhere); 
a rather harder thing to achieve, and we clearly do not want such an unambiguous 
specification. An elevation in architecture, for example, does not uniquely define a wall, 
but leaves open various properties such as choice of construction, facing and geographical 
location. If we assume that Hoare requires some form of unambiguity in the second sense 
above (and not just an unambiguous gram m ar) then we may observe a possible cause of 
the problem. Hoare wants to  use the specifications in two ways; as artifacts to  establish 
contractual boundaries, but also as blueprints for construction, although he does later 
observe th a t alternative forms (such as prototypes and models) may be more suitable for 
the first purpose. This dual purpose is problematic because we want the ambiguity to be 
in the details of construction and not in the properties of the artifact th a t the customer 
is interested in. This can be achieved by noting th a t observations are theory laden, so we 
want to observe the specification in different lights: the theory th a t has been developed 
in conjunction with the customer should yield unambiguous observations; th a t used 
by the construction engineer should be unambiguous in certain im portant aspects but 
leave freedom of interpretation in other respects. It might be said th a t implementation 
details should not appear in a  specification at this level, so th a t all aspects should be 
unambiguous, or th a t any “ambiguity” should be removed by the introduction of non
determinism. The fact remains, however hard we wriggle, th a t every observation must be 
interpreted in the light of some theory, and unless we can ensure th a t a common theory 
is being used to illuminate the observation, we cannot achieve unambiguity. One way 
around this is to use not second world semantics (what we read into a  specification) but 
a formal semantics. This does not help us to  “convince” customers, or to ensure common 
“understanding” , of course, but it does support formal analysis, and m ay expose areas
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of misunderstanding or strategies th a t can be used to  provide convincing arguments.

Once the problems of requirements capture and analysis have been overcome, Hoare is 
on safer ground. He then displays a true Popperian spirit by adopting refutationalism :

. .it will be possible to  devise a  series of rigorous and searching acceptance 
tests . . . I f  the product fails the test, and the implementors claim th a t the 
test is unfair, any competent logician or m athematician will be able to decide 
who is right” (page 9)

He is at odds with Popper, however, when he says that

. .the  chief programmer will convince himself and his colleagues by m ath
ematical proof th a t if each of the components meets its specification, then 
when aU the components are assembled, the overall product wiU meet the 
overall specification agreed by the client.” (page 9)

for such “conviction” has no place in Popper’s science. Rather we should view proof as 
an aid to refutation, by exposing yet more statem ents th a t could possibly be tested.

The problem here is th a t we are starting to  make the transition from scientist, working 
with the real problems of a client, to  m athem atician, working with conventionally defined 
third world objects, in addition to our agreed specification. These objects, according to 
Popper, are still open to  refutation, but in practice we accept them  as irrefutable. Once 
this transition has been made, we can use deductive reasoning to  establish irrefutable 
chains of reasoning, th a t is, formal proofs. We should still avoid confusing such proofs 
with “convincing argum ents” , however, for there are too m any convincing arguments 
th a t are logically flawed, or even sound logical arguments th a t are not a t aU convincing. 
Rather we should separate the two concerns, allowing conviction to act as a  reason 
for questioning some of our assumed theories, when a deduction is counter-intuitive for 
example, but using formal proofs to  provide the chain of reasoning without the distraction 
of intuition.

In observing th a t constructing a large and complex program, then attem pting to debug 
it, is a flawed approach, Hoare is essentially observing th a t it is not sensible to construct 
a large theory and continue to defend it against refutation on the way (by refusing to 
apply deductive reasoning), and then submit it to a massive dose of refutation after we 
have constructed an empirical (first world) object. Rather we should stay in control of 
our third world theories and get these consistent with the requirements, and aH other 
accepted theories, as far as possible before unification and implementation.

He does seem to be overstating the case, however, when he says

“Because of the clarity of program  structures and the completeness of design 
documentation, it will be quite easy to  determine which parts of the design 
and coding need to be changed in order to meet a new requirem ent.” (page 1 0 )
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It may well be tlie case th a t we can identify a.reas of change if the new requirements 
can still be viewed in the light of the existing theory, for then we have an appropriate 
searchlight. If the new requirements effectively refute the existing theory then there is 
no way of knowing how radical, or localised, the changes need to  be. It may well be 
argued th a t such a scenario is a  complete redesign, and not a modification, for as Turski 
has observed,

“The crux of the m atter is th a t an ineptly chosen term  masks the real issue.
(Once again, sloppy linguistic habits and a childish enthusiasm for new games 
th a t can be played without rules have lead us astray.) M aintenance, as defined 
by dictionaries, is the act of maintaining, i.e. of keeping in an existing state, 
of sustaining against opposition or danger, etc. Yet, to  quote a friend of 
mine, software engineering is the only discipline where adding a new wing to 
a  building would be considered as a  maintenance activity.” [TurSl, page 107]

In this case Hoare m ust provide a mechanism, or meta-theory, th a t can be used to decide 
when to modify and when to  s ta rt again.

Hoare’s optimism also betrays itself when he talks about improved estimates of project 
cost, delivery time and size of the final program. The existence of good substantive 
theories does not ensure the existence of effective meta-theoretical procedures. If it did, 
then we should expect scientists to  be able to  predict how long it wiU take to  find a 
cure for cancer, or a  m athem atician to  predict how long it will take to  find a particular 
proof . In these circumstances it is only experience th a t can help. Indeed, it may 
even be easier to make accurate estimates if we stick to a  non-scientific approach, for 
rules-of-thumb are stable and there are necessarily case histories to study. Of course, 
quality cannot be ensured. Just as the motor mechanic who must service a car in a fixed 
time may have to  ignore any faults th a t have not been allowed for, and may adopt a 
work routine so th a t he does not even notice them , so may the software engineer ignore 
additional “features” th a t might creep unintentionally into the system, and avoid being 
too analytical in case such problems are noticed. Neither should we ignore the fact th a t 
many estimates are currently made by those with vested interests in keeping estimated 
costs as low as possible, and not by those with the technical expertise and experience 
to make sensible judgements. Being scientific wiU no more overcome these problems 
than it overcame the funding problems of many great scientists who had to work in 
under-resourced laboratories even when they were about to make great discoveries.

Hoare goes on to mount a fairly explicit a ttack  on inductionism in Computing when he 
notes that

“ .. .interpolation and extrapolation are wholly invalid [in Computing]. The 
fact th a t a program works for values zero and 65535 gives no confidence th a t 
it will work for any of the values in between, unless this fact is proved by 
logical reasoning based on the very text of the program itself. But if this
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logical reasoning is correct, then there was no need for the test in the first 
place.” (page 1 2 )

Unfortunately he has again used a psychological term  in talking of “confidence” . The fact 
is th a t for most people such testing does build confidence. The real question is whether 
such confidence is well-founded, and, as Popper has noted, no num ber of observations 
of results we think are probable should serve to  increase our confidence. T hat should 
happen only when something th a t is unlikely but predicted turns out to  be the case. 
This is is partially reflected in the testing strategy th a t favours special cases over random 
instances. Of course, a  search for such cases requires a theoretical understanding of the 
program.

Hoare gives the impression th a t this approach will do away with the whole of testing, 
replacing it by logical reasoning. This cannot be the case, of course, if our programs 
are to be considered in any sense as first world empirical objects. If we are prepared 
to trea t them  as purely formal objects, forever located in the third world, then we can 
escape the need to test, but then our programs wiU be of little practical use. W hat 
Hoare actually achieves is a  relocation of the onus of testing; by establishing, once and 
for all, the custom er’s requirements before the program design is started , he removes 
the need to  test the program as a suitable candidate for solving the custom er’s problem. 
This may be theoretically valid, and could even be legally enforcible, but in practice, 
the professional software engineer wiU still want to  test such areas as the user interface 
design, and possible many others, during the design stage of a  project to give the clients 
a chance to change their minds. As is well known, user’s “requirem ents” change as they 
see the artifact being developed, th a t is, they alter their own theories as the empirical 
evidence of observation becomes available for their refutation. It may be argued th a t our 
new software engineers will be so proficient at requirements analysis th a t their clients will 
not need this second chance; in practice, just as the building of a new road causes extra 
traffic flow, so the client, seeing what great improvements were effected by the engineer 
before the design started , will be even more keen to monitor the progress of the design 
in case the possibility of more improvements presents itself. Provided th a t the software 
engineer is able to manage the pricing of such changes, there seems no reason to throw 
out such testing just because it is not necessary to achieve conformance with the original 
specification. We should observe, however, th a t such “testing” might be better called 
“test-driving” ; because although the client may view it as a test, the engineer should 
not. We shall reserve the term  “anim ating” for testing of this kind [Coli82].

The second relocation of testing is caused by the use of formal proofs of correctness as 
evidence tha t software satisfies its specification. Figure 2.2 shows a proof th a t a  given 
program meets a given specification. This proof is carried out in a  simple Hoare logic'*.

^We will not quibble over the fact that there should clearly be an upper bound on the data: the data 
set is practically infinite, in the sense that for most real problems it is infeasible to test all possible cases. 
This is analogous to the acceptance of Newton’s theory for certain practical tasks, the onus being on the 
engineer, of course, to ensure that the theory is not used outside its domain of application. In this case, 
we assume that the programmer intends to prepend a sufficiently strong initial condition guard.
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Show th a t

{(y > 1}
n := 0; := 1; W HILE y > k DO B E G IN  k := k * 2 ; n := n 1 \ END
{2 " - i < 3/ <  2*}

Proof

1 {(y > 2«) A {k =  2 "+ i)} n  :=  n +  l{ (y  > 2 * - i)  A (fc =  2")}  Axiom
2 {(y > 2™) A (A * 2 =  2''+i)}A; := k * 2{(y > 2») A {k = 2^+ i)}  Axiom
3 {(y >  2") A ( t  * 2 =  2»+!)}

k := k * 2] n := n I - 1
{{y > 2 " - i)  A {k =  2%)}

4 (y > 2 * " i)  A { k  =  2'^) A ( y  >  k) (y > 2^) A ( k * 2  =  2”+^) Lem m a
5 {(y > 2 " - i )  A (6 =  2") A (y >  &)}

A; := jk * 2; a := n +  1 
{ ( y  >  2 " - i )  A  (A; =  2 " ) }

6 {(y > 2 " - i )  A (k =  2^)}
W HILE y > k DO B E G IN  k k * 2] n := n + 1; END
{(y >  2 " - i )  A (A; =  2") A -n(y >  A;)}

7 (y >  2 * - i )  A ( t  =  2«) A -i(y >  A) 2 " - i  <  y < 2 "
8 {(y >  2 " - i )  A (& =  2«)}

W HILE y > k  DO B E G IN  k : = k * 2 ] n : = n  + 1; END  
{2 « -i <  y <  2 ’̂ }

9 {(y >  2 * - i)  A (1 =  2")}A; :=  l{ (y  > 2 * - i)  A (A: =  2*)}
10 {(y > 2-1 ) A {k =  20)}n :=  0{(y > 2 " - i )  A ( l  = 2«)}
11 y > 1 =^> y > 2“ 1
12 {(y >  l} n  :=  0{(y >  2 " " i)  A (1 =  2«)}
13 {(y >  l } n  := 0; k := l{ (y  > 2 « - i)  A {k = 2'^)}
14 { ( y > i )

n Q] k 1;
W HILE y > k  DO BE G IN  k :=  A; * 2; n :=  n +  1; END  
{ 2 " - i  <  y <  2"}

1,2 IR  Comp.

3 ,4  IR  Conseq.

5 IR  Iteration 
Lemma

6 ,7  IR  Conseq. 
Axiom 
Axiom 
Lemma
10,11 IR Conseq 
9 , 1 2  IR Comp.

8,13 IR Comp.

Figure 2 .2 : A Proof of Program  Correctness

For the initial problem, we were faced with an infinite set of test cases. Now we are faced 
with no tests at all unless we attem pt to refute the theory of the  programming language 
upon which the proof rests (or, perhaps less hkely, the theory of inequalities, or even 
predicate logic itself). We might argue, of course, tha t these theories are to be treated  
as conventionally true. They are beyond question. They define properties rather than  
describing them. This might well be the case for the lemma on fine 11, for example. We 
could trea t the axioms and rules of the Hoare logic in the same way, but this will only 
work if we are prepared to  accept th a t our programming language is a  pure third world 
object. Once we accept th a t our language is implemented in some real way, then we have 
simply shifted the onus of testing onto the implementor of the compiler, who m ust now 
show th a t each of the instructions used gives rise to empirical observations tha t will not 
refute the theory, and also th a t the implementation of natural num bers will satisfy the 
lemmas.
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This task is no simpler than  the testing of the original program, for each assignment 
statem ent (in fact, each possible call of an assignment statem ent), for example, must 
be shown to satisfy its axiom. It does, however, allow the reuse of test results. The 
compiler writer can adopt a similar strategy, of course, by formally proving his compiler, 
contingent upon the code of the microcode writer, who can pass the  task down to the 
hardware designer. Ultimately, the responsibility can be laid at the door of the engineer 
responsible for the fabrication system used in the production of the devices used. It is 
debatable whether the engineer has any right to  pass responsibility on to  the scientist 
responsible for the theories of solid state  physics th a t underpins his design.

Alternatively, we could think of our Hoare logic not as a convention, but as an empirical 
theory produced by analysis of an existing implementation of a language. Testing in this 
case is an a ttem pt to  refute the theory in the usual way. This view seems less strange if 
we remember th a t languages such as Ada were implemented before being given a formal 
semantics.

If we accept th a t the relocation of testing can be thought of as the avoidance of testing for 
a particular software engineer, then Hoare’s case can be supported. Formal deduction al
lows this relocation, and effectively perm its software engineers to  build upon the theories 
of others, in just the same way as scientists do. In conclusion, Hoare’s paper seems to be 
recommending a scientific attitude, together with the use of the mathematico-scientihc 
method, as the way ahead.

“T he Science o f Program m ing” by Gries

This book [GriSl] is one of the most influential items of Computing literature. Gries, like 
Hoare, restricts his attention to  “programming” , but it is clear th a t he is using the term  
to denote the production of code from a formal specification. He does not, for example, 
introduce issues such as requirements capture or management of the development process 
into the discussion.

Gries is clearly aware of the confusion th a t may arise from his use of the term  “science” , 
and so takes the trouble to  explain which of the Oxford Dictionary definitions he had in 
mind when adopting the term:

“Sometimes, however, the term  science is extended to  denote a departm ent 
of practical work which depends on the knowledge and conscious application 
of principles; an art, on the other hand, being understood to  require merely 
knowledge of traditional rules and skill acquired by habit.”

He goes on to say th a t, although programming started as an art, the science is just 
emerging. It is unfortunate th a t science and art should be seen as mutually exclusive 
in this way, and even more unfortunate th a t a  value judgement is implied tha t places 
science above art. There is no evidence in the book that Gries agrees with such a value 
judgement, but neither does he show us th a t he disagrees. A discussion of programming
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as an art is contained in K nutli’s Turing Award Lecture [Knu74].

Gries does not make explicit the fact th a t the book is addressing topics on two distinct 
levels:

1. The activities of programmers, and the principles th a t should guide their actions.

2. The programming languages th a t programmers use and theories th a t govern their 
use.

On the first level, Gries is trying to  establish a number of principles th a t govern the 
action of writing good programs. In a  sense this is truly an attem pt at a  science of 
programming laXliei: than  a science of programs. Adopting Popper’s argum ent, however, 
we can see th a t this is not a science in our strict sense of the term  (as Gries clearly realised 
when he took the trouble to  provide his working definition of science). Gries’s principles 
are not refutable laws, but guidelines for action, albeit guidelines th a t have arisen from 
theoretical considerations. In fact, we can view these guidelines as a  very simplified 
reflection of Gries philosophy of programming. If we take this liberty, then we can 
compare this philosophy with Popper’s comments on methods, and see if any similarities 
or conflicts can be found. This, of course, presupposes th a t we are prepared to accept 
some correspondence between programs and scientific theories. For the moment, we ask 
the reader to take this on tru st, or, at least, to  suspend disbelief.

We will only consider some of the more general principles raised in the book, for these are 
sufficient for the task in hand. Many of the other principles are specific to  a particular 
programming paradigm and therefore sensibly comparison with theory constructs would 
only be possible by the introduction of particular theory presentation paradigms.

“ • P r in c ip le ; A program and its proof should be developed hand-in-hand, 
with the proof usually leading the way.” (page 164)

To help us understand what he means here, Gries provides us with another definition, 
this time of a proof, from W ebster’s Third New International Dictionary

“ the cogency of evidence th a t compels belief by the mind of a tru th  or fact.”

Thus Gries is adm itting psychologism as a  basis, a position th a t can easily be defended 
by noting th a t his principles are guides to action, and action is governed by second world 
entities such as belief or emotion. It is evident from the context of the rest of the book, 
however, th a t this “cogency of evidence” is to  be provided through rigorous deductive 
reasoning, just as for Popper, and th a t all the assertions turn out to  be inter-subjectively 
testable observation reports. This means tha t we can stop short of using the evidence 
for the purpose of inducing belief, and consider Gries’ deductions as third world objects 
just like Popper’s. The motivation for these deductions is clearly different, however, for 
Popper would have us deduce things th a t can be observed, and hence act as refutations of 
the theory, whereas Gries deduces results which he hopes are not refutable, and which he

37



www.manaraa.com

can take as “true” . This comes about partly because Gries accepts certain base theories 
and initial conditions as effectively irrefutable.

The notion th a t a  proof and a program (or theory) should be developed hand-in-hand is 
held by both Popper and Gries. For Gries, the program is made more precise by adding 
the details of chunks of code in a  top-down fasliion, whereas Popper would add bolder 
conjectures. The idea th a t the proof leads the way is harder to  reconcile. This appears 
directly contrary to  Popper’s view th a t evidence in support of a  theory should be sought 
only after a theory has been proposed, and wiU take the form of severe tests of the theory. 
We cannot know what tests will be needed until we have analysed the bold conjecture. 
Indeed, Gries himself seems to  support this view with another principle:

“# P r in c ip le : Use theory to provide insight; use common sense and intuition 
where it is suitable, but fall back on the formal theory for support when 
difficulty and complexities arise.” (page 165)

This gives us the hint we require to  reconcile the two views, for it is the proof of program 
version 1 th a t gives rise to  program  version 2; for Popper, refutation will require us to 
build new theories, and failure to  refute should lead to construct bolder theories, whereas 
for Gries, attem pting deductive proofs of programs will lead either to faults th a t must 
be corrected, or to lemmas th a t m ust be satisfied by pieces of code yet to be written.

For both Popper and Gries the notion of problem solving is im portant.

“♦ P r in c ip le : Programming is a  goal-oriented activity.” (page 173)

This ties in neatly with Popper’s simplified diagram

P i ^ T T - ^ E E - ^  ? 2

For Popper, problems give rise to tentative theories, from which we attem pt to  eliminate 
errors, and this in tu rn  leads to new problems to  solve. For Gries, problems give rise 
to  outline programs, which leave gaps in the deductive chain, th a t require additional 
problems to be solved in generating the required code to fill them . Unfortunately, this 
model is so general th a t it can also be used to explain undesirable practice: take a 
problem, guess a solution, discover the bugs and try  to fix aU the problems.

The crucial differences between such hacking and the methods of Gries and Popper are

1. The tentative theories (programs) are developed with a view to refuting (proving) 
them, and not in an ad hoc way.

2. The step from T T  to E E  involves deductive reasoning, not seemingly random 
observation of behaviour. The hacker will observe the symptoms of any error and 
induce a patch to  reduce the severity of the problem. The scientist will use logical 
tools to attem pt to identify possible sources of the problem and propose changes 
to the theory (program) accordingly.
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The deductive system available to  the scientist is critical to  this process. Both Popper 
and Gries assume a base line of a  first order logic. For Popper, however, this is the only 
irrefutable base; everything else is held only tentatively, awaiting refutation. In practice, 
he does concede th a t the scientist wiU have some theories th a t are elevated, for particular 
purposes, to such a level th a t he or she wiU proceed as if they are “true” , and call them  
into question only as a last resort. It is a t this point th a t the second stage of Gries's book 
is called into play, for here he discusses in detail a  suitable theory of program  statem ents, 
in a particular language, th a t can be taken as part of this irrefutable deductive system. 
This effectively localises the domain of application of his approach to  situations for which 
the deductive system has not been refuted.

Gries does not refer to  his formal system, which is actually D ijkstra’s calculus of weakest 
preconditions [Dij76], as a theory, bu t as a  semantics. He is thus treating the theory in 
a conventionalist way, effectively saying th a t this theory cannot be refuted as it defines 
the programming language comprising the program statem ents in question. This, as we 
saw in Hoare’s paper, does not remove the possibility of refutation; it just pushes the 
problem down to the individual trying to implement the compiler for the language, or 
to the person trying to  select a compiler th a t can be shown to implement the language 
in question.

The choice of D ijkstra’s weakest precondition semantics does raise one other im portant 
issue, namely th a t we usually think of this as a  calculus rather than  a deductive system. 
T hat is, we are trying to  calculate the weakest precondition rather than  trying to  prove 
some theorem. This is actually a trivial distinction, for any theory th a t uses equality wiU 
contain theorems of the form x = y which can be interpreted as either true propositions, 
or as rules for calculating the values of one term  from another. This point counters 
the assertion th a t programs cannot be viewed as theories because they yield values not 
statem ents[Joh88]. This is iU-founded, as we can interpret the values th a t are yielded 
as pure values, or as statem ents with an implied left hand side answer = æ”). Such 
discussion, however, must be carried on outside of the theory, and cannot be a property 
of the theory itself.

In conclusion, G iles’s book serves to provide both a methodological and a theoretical 
basis for programming. It is perhaps unfortunate th a t this dual aspect is not made more 
explicit in the text. The book does show very clearly, however, th a t suitable deductive 
systems can be found for reasoning about programs (as third world objects, rather than  
psychological objects or running machines).

“Program m ing as T heory B uild ing” by Naur

In this paper [Nau85] Naur, like Hoare, treats programming “in a wide sense . .  .to  denote 
the whole activity of design and implementation of programmed solutions” , but he makes 
more of the fact th a t it should be viewed “as a hum an activity” . Unlike Hoare, however, 
Naur takes a holistic view of the activity, identifying only two m ajor sub-tasks, namely 
the initial creation of a program and its subsequent modification. N aur’s central tenet
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is tha t

“programming properly should be regarded as an activity by which the pro
grammers form or achieve a certain kind of insight, a theory, of the m atters 
in hand. This suggestion is in contrast to  what appears to be regarded as a 
production of a program  and certain other tex ts.” (page 253)

This statem ent both serves to  bring his philosophy into contact with th a t of Popper, 
and also to create a significant gap. Clearly, the stated aim of program  creation as the 
construction of a theory is very similar to  Popper’s stated aim of science. Unfortunately, 
the linking of theory with “insight” , and N aur’s subsequent refusal to decouple the two, 
leads us down the route of psychologism, which Popper was at great pains to  avoid. Naur 
seems to encourage us down this route, and actually seems to  be saying th a t theories 
must be psychological, and cannot be shared.

“A main claim of the Theory Building View of programming is th a t an 
essential^ part of any program, the theory of it, is something th a t could 
not conceivably be expressed, but is inextricably bound to  hum an beings.”
(page 258)

As we shall see, this leads him into a paradox which he seems not to notice, or at least, 
fails to  acknowledge.

The suggestion th a t there is more to programming than producing programs and related 
documents is a complex one. It is unclear whether Naur is making a judgement of the 
form “there are more im portant things th a t come out of programming than program s” 
or a  methodological observation tha t “in order to achieve the aim of writing a program, 
there are several tasks th a t need to  be carried out in addition to  th a t of writing down 
the code” or any one of many other possible interpretations. We will interpret the 
statem ent as meaning th a t the traditional models used for discussing programming are 
not sufficiently rich to cover the real issues, as they concentrate too much on the process 
of code production and other documentation. In particular, they do not pay sufficient 
attention to the people involved in the process. This is a  recurring them e in modern 
philosophies of science, where it is often stated tha t we cannot understand the history 
of science simply from the scientific literature, as this ignores the contexts, or problem 
situations, within wliich discoveries are made. Consequently any philosophy th a t seeks 
to rationalise science only as reflected in the scientific literature will not be a philosophy 
of the actions of real scientists.

Naur makes no claim th a t the theories he is discussing are in any way scientific, but 
his paper does amount to a  claim th a t science is not possible. His notion of “theory” 
is so general th a t it must include scientific theories. It appears, for example, as if Naur

^We will assumed here that Naur is not adopting an essentialist view of theories, but is using the term 
“essential” in its modern conventional sense of necessary. To discuss this further would be pointless, as 
there are no further hints in the paper as to the validity of this interpretation.
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has ignored the fact th a t one of the aims of modern science has been to  find ways of 
expressing theories so th a t they are as independent as possible from the context in which 
they arose. In Popper’s term s, we seek to  move the theories from the Second World to 
the Third, thus making them  part of science rather than  part of an individual’s thoughts. 
Scientists are positively discouraged from including in their scientific writings details of 
the thought processes th a t led to  their hypotheses, rather they are trained to  present a 
coherent, and logical, reconstruction of their activities utilising only the presented facts 
and estabhshed theories. As Medawar has noted

“The conception underlying this style of scientific writing is th a t scientific
discovery is an inductive process.” [Med64, page 8 ]

and this leads scientists to  ignore the actual sources of their ideas, especially if they 
cannot rationally reconstruct them , and to  proceed as if the ideas arose only out of the 
scientific da ta  under consideration. We must not infer from this, however, th a t a  logical 
discussion of the theory, and its tru th , should depend on the sources of the theory. It 
is central to Popper’s philosophy th a t we must decouple the theory from its source, 
and this in tu rn  means th a t we m ust find a way of expressing theories so th a t they 
can be understood without understanding the workings of the brain. Consideration of 
the processes involved in the conception of a  theory is a psychological problem, but by 
treating the theory only as embedded in the Third World we can allow science to  meet 
its objective ideals. In suggesting th a t such a separation is impossible Naur strikes at 
the very heart of modern science.

Naur raises the interesting question as to  whether it is ever possible to  complete a pro
gramming task, just as Popper states th a t we can never find the theory of something. If 
we express the requirements of a  system in term s of some other external agent(s), then we 
must recognise th a t these agents are liable to change over time. Consequently, we must 
make it clear what it means to  “meet the requirements” . We must also be aware tha t 
by expressing the system in term s of these requirements, we are functionally binding the 
system to the external agent. T hat is, the requirements are now a function of the agent 
(at a given time), but also it is possible to  interpret this binding in the other direction, 
and thus make the agent a  function of the system. Many companies have discovered 
this to  their cost, when they realise th a t a computerised set of procedures is quite ca
pable of determining, usually by constraint, the changes possible for the company. An 
extreme case of this is the m ajor impact of computerised systems on company mergers: 
if the computer systems are not compatible, then the mergers often cannot take place, 
regardless of the commercial desirability.

The implications of this for Software Engineering are obvious. We m ust consider the 
extent to which such changes are to be accommodated, how to achieve stability, how 
to cost and manage change, and how to provide legally binding contractual boundaries. 
This is considered further in subsequent chapters.
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N aur’s evidence in support of the theory building view of programming is largely anecdo
tal, which is not necessarily a  bad thing for it is the way much of the philosophy of science 
itself is constructed and justified, but sadly he seems to fall into the trap  of using these 
anecdotes to support just his preferred conclusions. The central tenet of his argument is 
tha t programmers who design a system are better able to modify it than  are newcomers. 
This he attributes to  the fact th a t the designers have the theory of the system, and 
th a t the newcomers will never be able to  acquire it, in spite of the documentation. His 
evidence, however, could equally well support the view th a t the current sta te  of system 
documentation is woefully inadequate for programmers who have to  m aintain systems. 
This is a conclusion th a t many will find much more acceptable, as typical documentation 
seems to address the issues of specification (the “w hat”) and implem entation (the “how”) 
but rarely explication (the “why”), thus leaving the layers of documentation unlinked 
by any logical structure. If he had adopted this route, then his subsequent attack on 
design methods would also be more coherent, for these are predom inantly attem pts to 
transform  the “w hat” documents into the “how” documents via a  prescribed set of rules. 
He could also have m ounted an attack  on the life-cycle model for system development, 
which suffers from the same lack of logical coherence. We will take up this challenge in 
subsequent chapters.

A second problem with N aur’s conclusions is th a t he seems to  be assuming a unique 
theory for the program (he constantly refers to “the theory”), and thus overlooks the 
possibility that the newcomers might construct a better theory. This new theory, how
ever, would not be a true reflection of why the programmers did what they did, but a 
post-rationalisation of events. There is no evidence tha t this would prevent the new
comers from modifying the program. Research into reverse engineering, for example, is 
evidence th a t some people believe quite the opposite. It may well be the case th a t a  team  
of newcomers, by bringing new theories and perspectives, may identify a more radical 
and effective set of modifications.

Tliis also gives rise to  a  m ajor paradox within N aur’s view, for he merrily talks of a 
team  of programmers and their theory, thereby suggesting th a t several programmers can 
share a  theory, but then wants us to  accept th a t this theory can exist only inside their 
heads. He seems to  want the original team  of programmers to  have a capability for 
theory transmission th a t the newcomers cannot have. He obviously wants theories to  be 
held corporately, but is not prepared to  allow for the corpus to  grow after the theory 
has been constructed. In this case, how does the first theory get communicated? The 
first programmer to have a theory forms a corpus of one, and the other members of the 
team are newcomers: the team  cannot bootstrap itself. This aspect of N aur’s view seems 
untenable.

The problem seems to be th a t Naur has failed to distinguish between having a theory 
inside your head, and the existence of a suitable theory in the Third World. This is 
strange, because, although he uses Ryle’s notion of theory[Ryl49], he refers to Popper’s 
Third World explicitly when he observes th a t Ryle’s notion of theory
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“appears as an example of what Popper calls unembodied World 3 objects 
and thus has a  defensible philosophical standing, (page 255)

Perhaps this is an example of the misuse of philosophy, using it to provide answers and 
justifications instead of expecting it to  raise questions. The reason th a t Popper in tro
duced the Third World was precisely to  overcome the problems th a t Naur is creating 
for himself. Theories in the Third World can be treated objectively and can be com
municated. Newton’s theory, for example, as a  Second World object died with Newton, 
but as a  Third World object it is alive and well. Naur could have developed a far more 
persuasive argument had he noted th a t programmers are reluctant to allow their theories 
into the Third World, where they can be objectively tested and possibly refuted, hence 
their reluctance to provide answers to  the “why” questions in the documentation. This 
reluctance can be seen as a m ajor barrier preventing Computing from becoming more 
scientific. It provides a  very clear link between the papers of Hoare, Gries and Naur, and 
the philosophy of Popper, and seems to  be a t the heart of our question. Hoare is asking 
th a t we use theories explicitly to improve the engineering of software; Gries is making 
available some guidelines for the use of theory, and also contributing a solid body of 
theory for our use; Naur is observing not only th a t we must use theories, but th a t we 
m ust construct them; and Popper is providing a framework within which we can view 
theories themselves.

Naur and Popper agree th a t there can be no method, in the sense of a  prescribed sequence 
of actions th a t we know in advance will lead to  the discovery of a  correct theory. This 
does not mean, however, th a t there cannot be guidelines and hints th a t may be useful 
in prom pting the m ental processes tha t are likely to  lead to the discovery of new ideas. 
Naur uses this idea to  criticise those methods of software development th a t are geared 
towards the production of specific documents, for these cannot be guaranteed to work, 
and may even inhibit the programmer who is forced to follow them  from ever building a 
correct theory. This point is further developed in Chapter Six.

A key consequence of N aur’s view is the need to elevate the status of the programmer. 
A programmer who is just following the rules, and creating the prescribed documents, is 
effectively de-skiUed. N aur’s view requires programmers to  make all the decisions, thus 
they can no longer be

“regarded as a component of ...p roduction , a component th a t has to  be 
controlled by rules of procedure and which can be replaced easily.” (page 260)

Unfortunately, Naur extends this attack on methods to include an attack  on the view of 
programmers as those who

“ .. .form ulate certain arguments in terms of rules of formal m anipulation”
(page 260)

Once again he seems to  be missing the point, although perhaps in this case the criticism 
should be levelled equally at the formalists who have failed to  explain their point of view
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adequately. The formal arguments are not used to  deduce the theories, but to  argue for 
their correctness. Popper is not seeking to  replace inductive science by deductive, but 
to replace induction as justification for theories by deduction as an aid to  refutation.

The main thrust of N aur’s argument here, however, is th a t we m ust recognise the pro
grammer as

“a responsible developer and manager of the activity in which the computer 
is a part. In order to  fill this position he or she must be given a perm anent 
position, of a status equivalent to  th a t of other professions, such as engineers 
or lawyers, whose active contributions as employers of enterprise rest on their 
intellectual proficiency.” (page 261)

It is interesting th a t Naur implies this status is a  gift to be given, whereas Hoare suggests 
it is a thing we should adopt for ourselves. This is not an im portant point of disagreement, 
for undoubtedly they both intend th a t the status should be both earned and awarded, 
but it does highlight the fact th a t not all of the changes th a t may be needed to improve 
current practice are necessarily within the control of the discipline itself.

Naur also notes the importance of educational change:

“The raising of the status of programmers suggested by the Theory Build
ing View wiU have to  be supported by a corresponding reorientation of the 
programmer education. While skills such as the m astery of notations, da ta  
representations, and data  processes, remain im portant, the prim ary empha
sis would have to  turn  in the direction of furthering the understanding and 
talent for theory formation. To what extent this can be taught at all must 
remain an open question.” (page 261)

In conclusion, in spite of its many shortcomings, N aur’s paper raises the im portant notion 
th a t programming can be seen as theory building, rather than  merely an activity tha t 
uses existing theories. Although Naur is completely at odds with Popper in his insistence 
th a t theories can only be psychological things, which seems to  prohibit all of science as 
demarcated by Popper, he has raised the whole question as to  whether programming is 
science rather than merely using science. This contribution m ust be acknowledged as 
very im portant to  aU th a t follows. In fact, Naur provides a  quotation th a t could be seen, 
suitably generalised, as the very raison d ’être for this research.

“A more general background of the presentation is a conviction th a t it is 
im portant to  have an appropriate understanding of what programming is.
If our understanding is inappropriate we will m isunderstand the difficulties 
th a t arise in the activity and our attem pts to  overcome them  will give rise to 
conflicts and frustrations.” (page 252)
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2.3 Sum m ary

In this chapter we have set the scene for the discussion th a t follows, by starting to 
view the activities of the Software Engineer within the framework provided by Popper’s 
philosophy of science. This philosophy will be refined as we progress, but it provides a 
useful basis for the discussions to  follow. We have also set the scene for the idea th a t 
Software Design is closely allied to  the process of theory building, an idea th a t will be 
developed further in Chapter Four.

45



www.manaraa.com

C h a p ter  3

C om puting as Technology, 
P roblem  Solving and D iscourse

“I f  one considers at once all the ramifications and ultimate consequences o f 
each exploratory act, he will be overwhelmed and unable to formulate any 
new constructs. One who has directed graduate students in their research 
efforts will have frequently seen this kind o f intellectual drowning take place”

George Kelly

In the previous chapter we started  to  explore the nature of software engineering design, 
but from a very limited perspective. The main purpose of this chapter is to  broaden 
the discussion by considering the process of software design from three additional per
spectives. The first of these relates to  the aims of the activity. It is usually assumed 
th a t science is the quest for knowledge or tru th , primarily for its own sake. There may 
well be occasions in Computing where such an aim is acceptable. More generally, how
ever, the production of software systems is motivated by utilitarian values. Activities 
with utilitarian goals are more usually term ed “design” , “technology” or “engineering” . 
Unfortunately, these terms are also frequently associated with the production of “real 
objects” , and it is far from obvious th a t information or knowledge based systems meet 
the generally accepted criteria for such real objects. In section one we will discuss Soft
ware Engineering in the light of a  brief review of the philosophies of technology, design 
and engineering to see if it can be considered a technological discipline.

The second and third perspectives we shall take seek to broaden the discussion by raising 
the human dimension. The groundwork for this has already been laid by accepting 
Popper’s philosophy as a  starting point, for, as Agassi observed:

“. . .  when Karl Popper’s Logic der Forschungoî 1934, or its expanded transla
tion, The Logic o f Scientific Discovery of 1959, caught readers’ attention, they 
found hardest to comprehend his coupling—his explicit and quite systematic 
coupling—of attitudes and theories. He demarcated scientific theories, not 
attitudes, yet he added a condition relating to attitudes. Theories are sci
entific, he said, if and only if they are empirically refutable; this however, 
is conditioned on our willingness to subject theories to  empirical tests and
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our readiness to  jettison them  once they are empirically refuted. It is a fact 
within living memory th a t people found this very puzzling.” [Aga8 6 , page 39]

The decision to  expand the discussion to  include the practitioner as well as the practice 
brings with it a num ber of additional questions. The most fundam ental of these is 
our perception of society itself. A num ber of views have been expounded regarding 
the nature of society, ranging from inductivist individualism, which takes society to be 
just an aggregate of a num ber of individuals, to organicism, or hohsm, which takes 
each individual to be merely a component in society. This question is discussed further 
in Chapter Six, where the issue materially affects the question of methods. The two 
questions we will discuss in this chapter, however, are, how do individuals solve problems, 
and what language processes are involved in the arriving at these solutions.

The first question gives rise to a  section on problem solving. This subject can be ad
dressed from a number of perspectives giving rise to several fairly disjoint bodies of 
literature. Research has been carried out on the psychology of problem solving, concen
trating on the production of models of the m ental processes involved and of the structures 
built up during the process. There has also been research carried out on improving the 
practice of problem solving, both by individuals and groups. This work has produced 
a num ber of classifications and heuristics for problem solvers. Another body of work 
is th a t of the A.I. community, who have sought ways of autom ating the problem solv
ing process. Of particular interest to  us is the approach th a t attem pts to  discover and 
emulate hum an methods. In our discussions of problem solving, ideas drawn from the 
literature of these three perspectives wiU be introduced, but no attem pt will be made to 
forge them into a  unified theory.

The final section in this chapter reviews the issue of using language to  solve problems. 
The approach used will be similar to th a t adopted for Chapter Two. A particular theory 
of discourse has been selected (tha t of Kinneavy [Kin84]) and an a ttem pt will be made 
to discuss software development within the framework this provides. This process is 
potentially very complex, as there are many disparate types of discourse th a t take place 
during the development of a typical software system. These might include, for example, 
the persuasive discourse of sales staff, the social interactions necessary for a group of 
individuals to  develop into a  project team , as well as all the technical discussions tha t 
need to take place and the documents th a t need to  be written. We will concentrate solely 
on the technical aspects of the development process, as we are concerned primarily with 
the technical education of software engineers.

3.1 C om p u tin g  as T echnology, D esign  or E ngin eerin g .

In setting out to  ask “In what sense is Computing a technological pursuit?” , we find 
ourselves in a very different situation to  th a t of the previous chapter. W hen considering 
Science, the problem was a vast literature, containing many coherent philosophies, and 
our solution was to select one particular perspective upon which to  centre discussions. In
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considering technology, however, no such literature exists; as Rapp says, the Philosophy 
of Technology “is still more of a  desideratum than a concrete reallity” [Rap81, page xii]. 
Feibleman has noted this fact too, when he writes

“Throughout history, technology has played a crucial part in hum an culture 
but there is no record th a t philosophers took any account of it. They give a 
lot of attention these days to  the existence of technology but very little to  the 
products of technology, but in no m ajor writings of the classical philosophers 
has the existence of technology ever been mentioned. Nowhere, to  my knowl
edge, a t least, has there been a philosophy which took the full measure of 
hum an practices by assuming th a t whatever men did about the making and 
using of artifacts was filled with meanings which needed to  be interpreted in 
philosopliical term s.” [Fei82, page 1]

We can only speculate on the reason for this lack of literature. Two of the reasons 
commonly put forward are significant to  our discussion. Jar vie observes tha t

“Technology seems to  have been treated  like Cinderella by philosophers of 
science. It has always been put in the second-best place, mentioned almost 
as an afterthought. This is perhaps understandable, since the received notion 
of the rôle of technology is th a t it is the province of engineers and other such 
non-gentlemen, and its philosophy thus is not a  m atter of great concern to 
the philosophical purist.” [Jar74, pages 86-87].

Bunge offers an alternative, but equally relevant, view;

These problems have been neglected by most philosophers, probably because 
the peculiarities of modern technology, and particularly the differences be
tween it and pure science, are realized infrequently and cannot be realized 
as long as technologies are mistaken for crafts and regarded as theory-free.” 
[Bun74, page 19]

The idea tha t we place values on disciplines in proportion to  the degree of abstract 
contemplation we perceive in them  has also been noted by Dehnert:

“The degree of conceptualization required by an activity or field of study 
became the mark of its dignity as an art or a science.” [Deli8 6 , page 109]

To compound the problem, creativity in the arts has also largely been ignored by philoso
phers, who leave the m atter to  psychologists, preferring to  concentrate on aesthetics. 
Thus design is impoverished by being ignored on two accounts: it is too concrete to  be 
respectable, and it is carried out by people. This lack of philosophical study leaves it 
bereft of foundations upon which to  flourish as an academic pursuit.

It is true th a t there have been philosophers who have adopted particular stances to 
wider issues th a t have significant bearing on acceptable views of technology. Aristotle,
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for example, adopted the position th a t the pursuit of knowledge for its own sake is 
superior to  actions undertaken in the pursuit of wordly life, for the  la tte r is merely a 
means towards the end of understanding the God-given cosmos by contemplation.

“For contemplation is a t once the highest form of activity (since the intellect 
is the highest thing in us, and the objects with which the intellect deals are 
the highest things th a t can be known).” [Ars34, Ethics X, 6 , 1177, a]

We m ust remember th a t Aristotle was talking within a very dilferent culture from th a t of 
the modern reader. RandaU, a modern follower of Aristotle, claims th a t Aristotle would 
not “elevate knowing above practical action” were he writing within a modern American 
praxis-oriented culture [Ran60, page 248],

Aristotle’s view is only one among many, of course. Karl M arx inverts this dominance 
of knowledge by taking the m aterial cause as primary [Mar59]. M artin Heidegger, on 
the other hand, takes a  radically different approach. He asserts th a t we must overcome 
this purely instrum ental concept of technology if we are ever to  understand it. We must 
come to terms with the ways in which m an ontologicaUy addresses entities.

“..  .if the ‘world’ itself is something constitutive for Dasein, one m ust have an 
insight into Dasein’s basic structures in order to treat the woiid-phenomenon 
conceptually.” [Hei62, page 77]

For Heidegger we are all technicians, for creating things is the perfect expression of 
our rationality [Hei59, pages 16-17]. The fact tha t technology is such an im portant, 
and complex, part of hum an existence, bu t has largely been ignored by philosophers, 
leads to what Stroker calls “the paradox of its continual beginning” [StrS3, page 323]. 
All the seminal writing on the Philosophy of Technology takes the form of sketches 
or initial attem pts at an overview of the subject, and no-one seems prepared to build 
on these sketches by analytical discussion aimed at clearly defining a  topic, critically 
assessing points of view, or seeking some global coherence. Such new writing as does take 
place comprises additional sketches, and hence the beginning continues. Stroker suggests 
th a t technology might present particular problems unparalleled in other subjects so far 
subm itted to philosophical analysis, and th a t “a certain skepticism is aroused . . . a s  to 
whether philosophical analysis in the same way as has been tried can succeed in arriving 
a t larger contexts th a t exceed mere beginnings” [Str83, page 333]. This should not be 
taken to mean th a t a better philosophical systemisation is not possible, rather th a t the 
means for finding it have yet to  be discovered. This endorses the view th a t no obvious 
research m ethod exists for this programme.

It is impossible in this thesis to  attem pt a  fundam ental treatm ent of the Philosophy of 
Technology, so we must be content with a fairly superficial treatm ent of particular issues 
of relevance (superficial because any depth of treatm ent would require suitable founda
tions upon which to build). Furtherm ore, we m ust be content with the “beginnings” , and 
accept the absence of an analytical framework within which these issues can be discussed.
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Many of these issues arise under the headings of “Engineering” or “Design” as well as 
“Technology” , but in the absence of philosopliies of any of these disciplines, if they can 
be so called, no attem pt wiU be made to  distinguish between them . In addition, the term  
“applied science” is often used as a  bridge between science and technology, and this term  
win also be taken to  mean technology in the modern sense.

Science and Technology, th e  dem arcation

One of the more widely discussed issues in the literature is the relationship, or demar
cation, between science and technology^. Most of this can be considered “appallingly 
superficial” [Gas72, page 297], and seems to  concentrate on idealised and outdated per
ceptions of both science and technology.

One of the most common dimensions of demarcation is th a t based on the product of the 
activity. The product of science is taken to be an increase in knowledge, and the products 
of technology are artifacts. Popper’s philosophy is founded upon such an assumption: 
“application and predictions interest [the scientist] only for theoretical reasons-because 
they may be used as tesïs of theories” [Pop59, page 59]. This assumption has been sharply 
criticised by Putnam , amongst others [Put74, page 222], for modern science is actually 
concerned with the production of complex models to  explain how things are. Technology 
is concerned with models of how things might be brought about. The distinction between 
th a t which “is” and th a t which “might be” is a subtle one, and is often captured in a 
line of demarcation th a t has science concerned with the natural world, and technology 
with the artificial [Sko72]. We m ust accept, however, th a t modern science does not 
just observe the natural world without intervention, but seeks to  create situations in an 
experimental context th a t man has already brought about. Even observation outside of a 
laboratory is often concerned with issues like the environment, where it is now accepted 
th a t man has had a significant impact [Rap74, page 94].

For Computing, the situation is even less clear cut, for we become forced to  consider very 
carefuUy what is “natural” about our domain of interest. Are num bers, for example, 
natural or artificial entities? It is here th a t Popper offers us assistance, by allowing such 
entities to have an independent third world existence. We must also remember th a t many 
of the systems we produce are actually embodiments of predictive theories, and there 
seems no essential difference between the environmental scientist’s theory of depletion in 
the ozone layer and the software engineer’s theory of stock control within a company.

It is often argued th a t it is the aims of science and technology th a t allow them  to be 
distinguished rather than  the products. Science aims at increasing knowledge for its own 
sake, technology a t improving m an’s existence by creating useful artifacts. Bunge, for 
example, states tha t

^One of the side-effects of this research is the light thrown upon this demarcation by considering 
the location of Software Engineering. As a “marginal object”, it causes us to reflect carefully on the 
demarcation as much as the object [Tur84, page 31],
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“If the goal is is purely cognitive, pure science is obtained: if primarily prac
tical, applied science.” [Bun74, page 19]

Thus the process of technology is sometimes considered to be th a t of demand-puU, where 
the perceived needs of society or individuals, in terms of the artifacts they desire, mo
tivates the activity. This distinction is rather naive in modern capitalist societies. It 
might also be argued th a t m an’s existence is not just his being bu t his well-being^ and 
th a t the quest for knowledge is an essential part of this well-being; m an only being con
tent when he is continually increasing his understanding of the world in wliich he exists 
[Gas72, page 293]. In this case, the quest for knowledge is simply a means to  the end of 
well-being. Even if we deny this line of argum ent, we must accept th a t modern science is 
rarely carried out for the pursuit of knowledge per se. Feyerabend, for example, suggests 
that

“ Late 20th.-century science has given up all philosophical pretensions and 
has become a powerful ôifsmess th a t shapes the mentality of its practitioners.
Good payment, good standing with the boss and the colleagues in their ‘un it’ 
are the chief aims of these hum an ants who excel in the solution of tiny 
problems but who cannot make sense of anything transcending their domain 
of competence.” [Fey75, page 188]

Individual scientists may derive their job satisfaction through believing they are con
tributing to the body of knowledge, bu t this should not be confused with the aims of 
science as a corporate endeavour witliin modern western society. In our society, it seems 
tha t science and technology both share a  common aim, namely to  meet the requirements 
of those funding the enterprise [Rop83, page 91]. If we assert th a t the nature of these 
requirements is fundam ental to  the demarcation between science and technology, then 
we m ust accept th a t identical actions carried out by identical individuals may be deemed 
science, technology or neither depending on whether the requirements of the sponsors 
are for improved knowledge, improved well-being of society, or an increase in wealth for 
the sponsor. Such a position seems unhelpful, and by adopting it we would effectively 
be depriving both “science” and “technology” of meaning in the modern world.

Following this line of demarcation, we can consider the codes of practice, explicit or 
implicit, drawn up for engineers and scientists. Typically, the scientist m ust value tru th  
and honesty above all else [Sno34]. The engineer, on the other hand, “has to  fulfill his 
professional work in the service of mankind . . .  to work with respect for the dignity of 
hum an life . . .  may not give way to  those who do not fuUy respect the rights of a human 
being and who abuse the true essence of technology; he must be a faithful collaborator of 
hum an morality and culture” . These were the standards set down for practicing engineers 
by the VDI (the German equivalent of the Engineering Council) in May 1950 [Hun83, 
page 51]. Such an idealised view of the engineer, desirable though it may be, does not 
seem an accurate reflection of the typical practitioner of Software Engineering. Dieter 
has noted th a t “it is sometimes said . . .  th a t an engineer is a person who can do for $1
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what any fool can do for $2 .” [Die83, page 286], and the proverb “rubbish th a t sells isn’t 
rubbish a t all” , often accredited to British business [Rop83, page 94], may well be seen as 
more appropriate for summing up the value systems within which the modern engineer 
has to work. Indeed, such value systems may even better reflect the environment of many 
industrial scientists.

The use to which theories are put in science and technology is another commonly adopted 
m ethod of demarcation. It is often said th a t a technologist accepts a theory if it is 
useful, rather than  if it is true. The scientist, on the other hand, accepts only theories 
th a t are true. Following Popper, such a position is untenable. Both the scientist and 
the technologist accept th a t a theory is neither true nor false, but rather refuted or 
currently unrefuted. It is the case th a t a technologist is generally concerned with a much 
more restricted domain of application than the scientist, who seeks generalisations where 
possible. Even the scientist, however, will continue to use the principles of Newtonian 
mechanics in situations where he is confident th a t observations cannot be made to  refute 
them. This is often discussed using the idea of an approximate theory, but such a 
concept seems unhelpful in the absence of genuine metrics for the degree of applicability 
of a theory.

Another possible line of demarcation is the idea th a t science precedes technology, by 
providing the theoretical foundations upon which technological decisions rest, and tha t 
the production of artifacts is the result of supply-push. M artin Heidegger discusses 
this point, and observes th a t, although we may consider science historically prior to 
technology, we should accept tha t ontologicaly it follows from it [Hei77]. Hide suggests 
th a t even the historical precedence of science is perceived rather than  actual [Ihd83, 
page 240]. The widespread acceptance of the idea tha t science feeds technology, rather 
than the converse, is illustrated by Ryle, who states without question:

“Engineering does not advance physics, chemistry or economics; but com
petence at engineering is not compatible with complete innocence of these 
branches of theory.” [Ryl49, page 298]

In modern society the historical precedence of science is starting to  wane. In 1974, Rapp 
wrote

“It can be taken as a  rule of thum b th a t sooner or later scientific findings are 
applied in technological practice in some way or another. As a result of the 
powerful pressure of competition in the economic and arm am ent spheres the 
time lapse in this process between discovery of new findings and technological 
utilization of them  is being constantly reduced.” [Rap74, page 98]

Since 1973 this time lapse has reduced still further, and in many cases appears to  have 
become negative, in the sense th a t technology is waiting for specific scientific results, 
with the application already decided upon. One side-effect of this is th a t the distinction 
between science and technology is becoming increasingly blurred. In m any cases, the
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technologist is breaking new ground whilst solving practical problems, and thus playing 
the rôle of scientist by advancing the theoretical underpinnings of the discipline. This 
relationship between science and technology has also led to  the modern technological 
imperative. In 1975, Teller, the so-called “father of the atomic bom b” told a journalist 
from “Bild der W issenschafts” th a t the  technologist “ought to  apply everything he has 
understood” . This creates a  new moral dictum to accompany K an t’s “ought to implies 
can” , namely tha t “can implies ought to” . Accepting both of these maxims, of course, 
leads to  a  spiral of investigation and application independent of any external axiology.

The situation is even more confused for software engineering, for it can be argued th a t 
our products have many of the characteristics of theories themselves. Moreover, our 
application domains are often bereft of theories to use at the outset, so the software 
engineer has to construct theories of what the system is to  be, as well as using theories 
to bring this about. Civil engineers, on the other hand, do not usually need to  worry 
to the same extent about constructing theories of the artifacts, for these are generally 
well-understood. They can concentrate on using the theories of components to bring 
about the construction. On occasion the engineers’ understanding of the artifact will 
let them  down, and the enterprise will fail. A classic example of this is the disaster of 
the Tacoma Narrows Bridge, where the engineers failed to understand the artifact as an 
aircraft wing as well as a bridge. This oversight meant th a t they did not foresee the 
effects of a high wind on the structure [Pet82, pages 164-165].

Throughout this thesis it will be assumed th a t the line of demarcation is very thin and 
fragile. Rather than  attem pt to  delineate “science” and “technology” , or “scientists” 
and “technologists” , we will distinguish only “scientific a ttitudes” and “technological 
a ttitudes” to theories. The former we will take to be Popper’s ideal of the attitude 
underpinning scientific practice, the willingness to seek refutation of theories and to 
propose theories with the expectation th a t they will be refuted. The la tter we will 
consider to be an instrum ental acceptance of theories, where refutation will be taken 
primarily as indicating th a t the theory has been inappropriately applied, although the 
process may well also indicate flaws in the theory itself. This very simplistic demarcation 
has one very im portant impact, however, for we must allow th a t “scientists” sometimes 
behave with technological attitudes, such as when they are designing instrum entation and 
experiments, and also th a t “technologists” sometimes behave with scientific attitudes. 
In particular, we will establish in the next chapter th a t the software engineer must adopt 
a scientific a ttitude during some stages of a typical project, and adopt a technological 
attitude during other stages. The hnk between these two stages will be provided by the 
theories themselves.

T he D evelopm ent of M odern Technology

In addition to considering the demarcation between technology and science, we can also 
turn to the development of technology for insight. Various authors have noted tha t 
technology can be considered to  have progressed through a num ber of phases. There is,
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however, some confusion as to  whether these phases represent the development of society 
as a whole, the development of individual technologies, or the development of individual 
technologists. If we adopt the first view, then we might expect all technologies within 
our culture to be in the same stage of development, whereas the second view allows for 
disparity between different technologies at a given time. The th ird  view would allow 
individual practitioners to evolve through the various phases.

The first phase considered is usually term ed the primitive phase, and is summed up by 
Gasset

“How does primitive m an perceive technology? The answer is easy. He is 
not awaie of it as such; he is unconscious of the fact th a t among his faculties 
there is one which enables him to  refashion nature according to  his desires.” 
[Gas72, page 307]

Some would consider th a t unperceived actions cannot be called technology, and so do 
not consider this phase at all. One of the characteristics of this phase is the lim itation of 
technological progress inherent in the society. Sprague de Camp, in his work on Ancient 
Engineers, observes th a t

“Primitive peoples live a  hand to m outh existence . . .  Therefore they can less 
well afford to  risk experiment than  more advanced people...

As a result, primitive societies are very conservative. Tribal customs prescribe 
exactly how everything shall be done, on pain of the god’s displeasure. An 
inventor is likely to  be liquidated as a  dangerous deviationist.” [dC77, page 6 ]

One possible explanation of the so-called software crisis is th a t the software industry is 
behaving like a primitive society, living a hand to  m outh (or project to  project) existence 
not through necessity but because of a desire to minimise overheads and maximise profits. 
At the same time, however, it is sophisticated enough to recognise the symptoms of 
the problem. The “solution” to the paradox this causes is to  rationalise the behaviour, 
encapsulating the “customs” into methods and imposing these methods on the designers. 
In this way the engineer cannot accept responsibility for the design. This provides a 
refuge from responsibility, but locks the engineer up in it like a prisoner. This is tragic 
enough, but unfortunately many academic institutions have adopted these methods as 
cornerstones of the curriculum, thus institutionalising the students and preparing them 
for imprisonment.

Alongside such treatm ent of primitive societies, some authors consider magic as being 
“technology in seminal form” [RapSl, page 71], for “both activities . . .  a ttem pt to achieve 
a given goal as reliably and simply as possible” [E1172, page 24]. Although there are 
undoubtedly many interesting ideas raised by this line of enquiry, it will not be pursued 
further here, as it is not of direct relevance to the task in hand.

The next phase of technology is usually considered as craftsmanship. Gasset, for example, 
summarises this as follows:
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. .in craftsmaiisliip there is no room whatsoever for a sense of invention.
The artisan must learn thoroughly in long apprenticeships—it is the time of 
m asters and apprentices—elaborate usages handed down by long tradition, 
rie is governed by the norm  th a t m an m ust bow to tradition as such.” [Gas72, 
page 309]

Feibleman has observed th a t in this phase of technology there is a  clear distinction 
between craft and science,

“111 the Middle Ages, there was natural philosophy and craftsm anship. Such 
science as existed was in the hands of the natural philosophers, and such 
technology as existed was in the hands of the  craftsmen.” [Fei72, page 38].

This historical division is considered by some to  continue:

“Many methodologists and philosophers of science insist th a t technology is 
in principle a composition of various crafts. Regardless of how sophisticated 
these crafts have become, they are still crafts.” [Sko72, page 43]

The third phase can be considered as modern technology:

“Today the engineer embraces as one of the most normal and firmly estab
lished forms of activity the occupation of inventor. In contrast to the sav
age, he knows before he begins to invent th a t he is capable of doing so, 
which means th a t he has ‘technology’ before he has ‘a technology’ ” . [Gas72, 
page 311]

This modern phase differs from th a t of the craftsm an in the extent to  which scientific 
principles are used.

“...o n ly  tentatively and rarely did technology, with its roots deep in the 
craftsmanship of the earliest recorded times, or perhaps in the even earlier 
known techniques of palaeolithic hunters and artists, reach across barriers 
of social class occupations to join with science, and then only in periods of 
particular social requirem ent.” [CohS3, page 35].

Milieudorfer adds ex tra resolution to the notion of modern technology, by subdividing 
it into three phases. First came the industrial revolution, concentrating on the m aterial 
problems of man. Second came the need to  solve the resulting information bottleneck. 
Currently we are faced with the third phase, the need to resolve the ethical questions 
th a t modern technology is posing, [Mil76, pages 408-413].

Before considering the features of modern technology in more detail, however, we will 
approach the question from a slightly different angle.

Ob



www.manaraa.com

U nselfconscious and Selfconscious D esign

One of the most significant texts w ritten on the subject of design is Notes on the Synthesis 
o f Form  by Alexander [Ale64], to  which page numbers in this section refer. Although this 
was originally written about design activities in architecture and town planning, many 
of the ideas are transferable to  software design.

A central theme of the book is th a t design starts  out being an unselfconscious activity, 
typically in more primitive societies, where it is carried out by following rules of thum b, 
or religious dogma. Many of these rules are distillations of good practice arrived at over 
centuries of repetition. If something goes wrong with the design, possibly because the rule 
is not quite applicable, then there may well be specific actions laid down to remedy the 
fault. If there are no appropriate rules laid down the designer can take immediate action, 
possibly even random action, observe the effect, and reverse the action if necessary. The 
designer in this situation does not explicitly consider his actions, and never gets a  chance 
to compare them with those of others: actions are governed by habit or conditioned by 
response.

This class of design, Alexander maintains, works for certain types of problems, and is 
stable even when the problems change. One of the reasons for this is th a t the designer 
experiences failure first-hand, and so can react accordingly and immediately. The de
signer is not faced with a large number of symptoms a t once, but can trea t each one 
as it arises. Such a system could well be unstable, but the in-built traditional methods 
provide a  damping effect, making the designer reluctant to  change rules th a t have stood 
the test of time. As Alexander says,

“Rigid tradition and immediate action may seem contradictory. But it is 
the very contrast between these two which makes the process self-adjusting.”
(page 52)

Furthermore, as the designs have evolved over a long period of time, they generally 
fit well with the problem because the structure of the solution has evolved alongside 
the recognition of the problem. Consequently, the subsystems of the solution are likely 
to map directly on to distinct areas of the problem, and so a num ber of recognisable 
subsystems can be isolated to work on. Thus remedies to cure a fault in one subsystem 
are unlikely to impact on other subsystems.

W ith self conscious design, however, the situation is different. Now the designer recog
nises th a t the solution is his personal concern, rather than  part of tradition. This brings 
with it the desire to stam p the individual’s personality onto the design, but also a feeling 
of inadequacy, because complex problems are too difficult to get to grips with ah ini
tio. To handle the complexity, the designer starts  to impose conceptual order onto the 
problem. This order can now be communicated and taught, so we have the beginnings 
of an abstract discipline of design, rather than the passing on of craft techniques. Un
fortunately, there is no evidence to suggest th a t the chosen order will m ap well onto the 
designed system, and so the selfconscious designer has sacrificed the ability to react to
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problems by changes to well isolated subsystems. Furthermore, now th a t design can be 
discussed, it can be carried out by groups of individuals on behalf of others. Thus the 
designer also loses the immediacy of feedback.

Alexander identifies a critical transition period, when a designer is changing from un
selfconscious design to  th a t of selfconscious design, for here several problems arise. In 
particular, the emergence is accompanied by a loss of innocence. The unselfconscious 
designer cannot be guilty of failures, other than  by choosing to ignore the rules. The 
self conscious designer, however, m ust make all the decisions, he has lost his claim to 
innocence. If the design does not work then it is apparent who is to  blame. At the 
same time, however, the designer is trying to  handle complex problems (or the move to 
selfconscious design would probably not have occurred). Consequently the designer feels 
exposed and at risk. Alexander notes two responses to this situation.

The first is for the designer to seek refuge in pretensions to genius. By claiming th a t the 
ability to design is inbuilt, he can refuse to discuss the processes of design, claiming tha t 
it just happens by inspiration. If the inspiration fails to arrive, it is clearly not his fault. 
Indeed, he may go further, claiming th a t any attem pt to analyse the design process may 
destroy it by rendering it unavailable to  inspiration. Alexander notes th a t

“Enormous resistance to  the idea of systematic processes of design is coming 
from people who recognise correctly the importance of intuition, but then 
make a fetish of it which excludes the possibility of asking reasonable ques
tions.” (page 9)

The second response is to seek refuge in the safety of established styles, thus returning 
to the way of following tradition, and alleviating the burden of decision.

It is interesting to  consider Computing in this light. First, we can observe th a t a great 
deal of unselfconscious design takes place, particularly amongst those who program com
puters as a hobby. They do not, in general, reflect on what they are doing, but attem pt 
to create programs to solve problems which they experience first hand. Frequently these 
programs are developments of existing systems, such as better games, and the starting 
point for the development is experience of these. The designer and user are usually one 
and the same person, so th a t the designer can try  out the program, react immediately 
to any faults, and act accordingly. If an action does not work, it can be undone, or left 
in situ  and programmed around. Some extremely complex programs can be developed 
in this way, and to the designer these wiU be “good” programs because they fulfill the 
perceived need. Often, of course, the need is actually forged alongside the development 
of the solution. T hat such programmers are considered inspirational, and almost divine, 
can be seen by the comments of many parents whose children can program  in this way. 
They see the actions as inspirational genius, coming from within the child. The child 
is usually unwilling, or unable, to discuss exactly how the system was developed, often 
resorting to comments like “I just did i t” . This attitude is of primary concern to anyone 
charged with the task of educating software engineers in higher education, for it is likely
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to be the dominant a ttitude among those who have any computing experience entering 
higher education from schools.

The second reaction, seeking refuge in styles, can also be seen amongst computing profes
sionals. In particular, it could be considered th a t the current fascination with proprietary 
design methods is an a ttem pt to  find escapes from the loss of innocence. If a  software 
engineer is using lEW , for example, and the design is a  failure, then it can be claimed 
tha t the m ethod is at fault, not the designer. Again this phenomenon can be observed 
amongst students. Once they have been shocked out of their pretensions to  genius, they 
often run immediately towards methods, wanting to know exactly what sequence of steps 
a particular m ethod lays down for solving their current problem. One of the sad facts 
about this resjDonse is th a t the existence of a  style or method as a refuge from the loss 
of innocence may well disguise its potential advantages. So called “formal m ethods” and 
“object oriented design” , for example, are approaches to  design th a t bring m any benefits. 
If treated  as styles for refuge, however, they are belittled and devalued. Many of the 
criticisms of such approaches dem onstrate th a t they are being assessed as refuges, not 
tools under the control of the designer.

Another problem of selfconscious design arises because the designer, faced with complex 
problems, will impose form onto the problem according to historical accident. He is likely 
to see previous problems and solutions wherever he looks. Even the language he uses for 
describing problems will contain bias.

“Caught in a net of language of our own invention, we overestimate the 
language’s impartiality. Each concept, at the time of its invention no more 
than a concise way of grasping many issues, quickly becomes a precept. We 
take the step from description to  criterion too easily, so th a t what is at first 
a  useful tool becomes a bigoted preoccupation.” (pages 69,70)

Alexander’s solution to this is to suggest th a t we can abstract away from these precon
ceptions by using mathematics. Producing formal models of the concepts we hold, he 
claims, will remove their bias by retaining only their abstract structural features. This 
is an interesting claim, but one th a t is difficult to support. Alexander is in danger of 
comparing two dissimilar things. The question he should address is whether a description 
is less likely to be biased if it is expressed formally than when it uses familiar terms in 
English. We will return  to this question when discussing theories in Chapter Five. He 
develops this idea by identifying two properties th a t his abstract models (which he calls 
diagrams) may have. They

“. . .  may have either or both of two distinct qualities, not always equally em
phasised. On the one hand they may summarize aspects of physical structure 
. . .  One the other hand, the diagram may be intended to  summarize a set of 
functional properties or constraints. ...T h is  kind of diagram is principally 
a notation for the problem, rather than  for the form. We shall call such a 
diagram a requirements diagram. . . .
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We shall call a diagram constructive if and only if it is both  at once—if and 
only if it is a requirements diagram and a form diagram at the  same time. ”
(pages 86-87)

He goes on to say

“It is the aim of science to give such a unified description for every object 
and phenomenon we know.” (page 90)

The quest for such constructive diagrams seems to be at the heart of most structured 
design techniques currently in vogue. Unfortunately, these techniques do not seem to 
have taken on board the need for the diagrams to  be sufficiently abstract, rather they 
attem pt to be directly related to the concepts currently held by users, designers and 
managers alike. For Alexander, such techniques are unlikely to  produce good fits, for 
although they may well result in constructive diagrams, these diagrams are likely to 
reflect the preconceived notions of the individuals involved rather than  the true form of 
the problem. These ideas are developed further in Chapters Five and Six.

At the heart of the design process for Alexander is the idea th a t we are trying to  produce 
a form that wifi fit perfectly with its context into a stress-free ensemble. He notes, in 
Popperian style, th a t this really means we should observe not correctness of fit, but the 
absence of errors, and further th a t there is a  danger th a t we wifi concentrate on those 
areas for which suitable metrics exist for measuring errors.

Finally, Alexander offers a  contribution to  the demarcation discussion, when he says

“Scientists try  to  identify the components of existing structures. Designers 
try  to shape the components of new structures. The search for the right 
components, and the right way to build up the form from these components 
is the greatest challenge faced by the designer.” (page 130)

The Logic and M ethod of Technology

In this section we wifi explore the existence of a “logic” and “m ethod” of technology 
analogous to  th a t discussed by philosophers of science. It m ust be remembered th a t 
claims for a logic and a m ethod of science are largely refuted now, in favour of the view 
that many models exist, aU of which contribute to our understanding of the scientific 
process.

Logics and methods for technology can be discussed on at least two levels, the micro
level, concentrating on how individual decisions and actions are grounded but minimising 
the environment within which they take place, and the macro-level, concentrating on the 
organisation of projects, including their relationship with their environment, but ignoring 
the details of individual decisions. Discussion of the macro-level wifi be delayed until 
Chapter Six, where we can develop the subject in the light of the reviews of problem
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solving and discourse theory contained in the next two sections, and also centre discussion 
around a proposed model for the development process presented in the next chapter. We 
will restrict attention to  the micro-level, and consider the ways in which technological 
actions, captured in the form of rules, are grounded in the laws we derive from scientific 
theories,

Bunge identifies four kinds of rules th a t govern technological action; rules of conduct 
(such as social behaviour), rules of thum b, rules of sign (such as the gram m ar rules 
governing language and the symbolic systems of m athematics) and rules of science. He 
asserts tha t

“A rule [of science] is grounded if and only if it is based on a set of law
formulas capable of accounting for its effectiveness” [Bun74, page 68].

He further asserts th a t the success of modern technology can be attribu ted  to  the replace
ment of rules of thumb by scientific rules and also to the trend to  derive new grounded 
rules from scientific theories.

The fact th a t making “the step from theory to  practice is to proceed from an understand
ing of the anticipated consequences of a particular procedure to  a concrete directive for 
action” has been noted by Rapp [RapSl, page 59]. This step, however, involves ad
m itting the technologist in a way th a t philosophers have long resisted when considering 
science. “Understanding” of the law is required by the technologist, and the resulting 
actions wiU be directed by this subjective understanding. In one sense this subjectivity 
is necessary, for the technologist must be involved in an action for it to  be considered 
part of technology. We wiU refer to this as partiality [Bun74, page 72]. In another sense, 
however, we would like to remove individual subjectivity from the process, replacing it 
by inter-subjectively testable statem ents, for then we can provide the public with the 
confidence inspired by a professional community, rather than  a collection of high priests. 
It is the reduction of this type of subjectivity th a t both Gries and Hoare are advocating 
in their publications, but which Naur seems to suggest we cannot achieve.

In the light of this discussion, is any logic of technology required other than  the logic 
of science? The answer seems to  be th a t the logic of science is sufficient for the laws 
grounding the theories, but if we require the ability to  be analytical about the process 
of grounding itself and also the selection of rules, then we require a logic capable of 
encompassing both scientific laws and technological actions. Moore suggests th a t we 
also need to  consider the knowledge of laws, for the existence of laws alone is not enough 
to explain actions. Furthermore, we need to  be aware th a t knowledge is not static, and 
will change as we progress with any particular problem [Moo85]. The simpler logics 
of technology operate in a way analogous to  the separation of programs and da ta  in 
computer systems. The more complex logics allow programs (rules) to be altered as da ta  
[Alt89]. Since we are not seeking to  be scientific about the processes of technology, only 
to allow technologists to  be scientific in their actions, we will not consider this aspect of 
the problem further. We will restrict our attention to a very simple logic relating rules
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to the laws th a t ground them  [Bun74],

We will centre this discussion around a scientific law of the form A  = >  B . We will use 
Bunge’s example to  provide a particular interpretation, and call this law LI.

L I If the tem perature of a magnetized body exceeds its Curie point then it becomes 
demagnetized.

This law is part of a  simplified theory, and ignores many aspects of magnetism, such 
as the existence of param agnetism . We will assume that the decision to  use this theory 
is justified by the nature of the problem being considered. This is a commonly used 
technological device;

“The well established and logical action to  which technology owes its efficiency 
is, as a  rule, restricted to  only the immediate technological task."''* [RapSl, 
page 135]

The law LI provides the grounding for two practical rules

R l ;  In order to demagnetize a  body, heat it to above its Curie point.

R 2 ; To avoid demagnetizing a body do not heat it above its Curie point.

We can symbolise these as B per A  and per -^A respectively, where we read per as
“by doing” . The transitions from 4̂ to .4 and from B to B reflect the fact th a t A  and
B  are assertions whereas A  and B are actions. Bunge does not make this explicit in his 
notation, allowing context to  disambiguate meaning.

Rules are not tru th  valued, but they may be viewed as effective or not effective^. This 
gives rise to a three valued logic, utilising values for effective, ineffective and unsure, 
because knowledge concerning the occurrence of A  and B  does not necessarily tell us 
anything about the effectiveness of the rule. In particular, if we do not carry out A  then 
we can say nothing about the effectiveness of R l.

This raises an im portant point concerning the relationship between laws and rules. The 
effectiveness of a  rule can teU us nothing about the “tru th ” of a  law, although its inef
fectiveness may indicate the falsity of the law. The observation th a t an occurrence of A  
is accompanied by an occurrence of B, for example, does not teU us th a t A  =4»- R , for 
the law grounding this rule might he A A B , B  4 ,  (4  A C) => B  or any one of an 
infinite number of such constructions. This is simply a restatem ent of Popper’s obser
vation on refutation. It does have one significant implication for Software Engineering, 
however, which has never been explicitly noted. The starting point for m any designs 
in Software Engineering are not laws but existing sets of procedures, which are to be

Of course, they may trivially be encapsulated to form assertions which wiU be truth valued.
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improved upon and autom ated. This means th a t the Software Engineer m ust make the 
transition

{ R l ,  R 2 , • • ■ R n }  -------^ ^ 2 5  • • * ^ m }

not

, L2 , • • •  L,i{ ^  "{-^1 » R2, •  •  •

as is often suggested (possibly erroneously) for traditional engineering. A m ajor con
tention of this thesis is th a t the appropriate route for a professional engineer to  take is, 
in simplified form,

{Rl ,  R2, • • - Rn}  —  ̂ {-C'lj L2, . .  •Lm} — {Rp} Rpi • • -Rp}

The first transition representing the scientific (theory construction) phase of the process, 
and the second transition the engineering (theory implementation) phase. Feibleman 
notes this point when he says

“Technology is more apt to develop . . .  laws which are generalizations of prac
tice rather than  laws which are intuited and then applied to  practice.” [Fei72, 
page 36]

although he fails to discuss why generalisations can be distinguished from intuited laws: 
generalisations would seem to involve intuitions in precisely the same ways as scientific 
theory building. This idea forms the basis for the model of system design developed in 
the next chapter.

The existence of law L I  is not a sufficient condition for the technologist to be able to 
achieve goal B, for several obstacles may present themselves. First, action A  may not be 
achievable with current technology. Knowing “th a t” may lead to  a  knowledge of “how” , 
but this should not be confused with the ability to  carry the “how” out. This barrier may 
lead the technologist to  consider problems with subgoals of A ,  in order to  find suitable 
antecedents of nomopragmatic statem ents, such as A  per C. This should involve the 
technologist in seeking corresponding laws on which to  ground the rules, or possibly in 
commissioning a scientist to find these laws. Thus the technologist uses theories in the 
pursuit of law statem ents. Only in the simplest case wiU the transition above suffice; in 
general we might expect a sequence of grounded laws to be necessary to complete the 
transition.

R 2 , ■ • • R n '}  ~  ^  ' { • f ' l )  - ^ 2 »  •  * • Lf f i }  ^  { - ^ 1 5  ^ 2 )  ■ ■ ■ ^ i n }

{LI, L'i, { i j ; ,  i Z ; , . .  . i j p

A second barrier th a t may arise is th a t laws are associated with theories, and theories 
explain only well-isolated subsystems of the real world. A theory may well stand the
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tests of refutation in a clinical laboratory, where experiments can be isolated from en
vironm ental interference, but utilising a law in a  production environment requires th a t 
the environment constitutes an acceptable model of the theory. This is why the ineffec
tiveness of a  rule does not necessarily refute a law, but may indicate th a t the scenario 
in which the law is being applied is not a  satisfactory model of the theory being used. 
Many modern engineering problems are really concerned with finding ways of making 
a production environment model a  theory adequately. In computing, however, we have 
a unusually high degree of control over our immediate environment. Hardware is sus
ceptible to  interference from physical activity, but software can usually be protected. 
Indeed, one of the properties usually associated with “good” software is the separation 
of modules into well-protected units. If Giles’s laws of programming do not apply then 
we can usually trace the problem to errors in the implementation of another technological 
artifact, only rarely do problems arise due to to  factors which are beyond our immediate 
control.

3.2 P rob lem  S olv ing

Problem solving, like technology, is another area th a t is fundam ental to  many human 
activities, but has never been studied in a  unified way. Historically there are two strands 
to the literature of problem solving. First there is the m athem atical strand discussing how 
m athematicians solve problems; this is typified by the the works of Descartes, Poincaré 
and Polya. Second there is the psychology of problem solving, which is intim ately linked 
to the study of thought itself. This has its beginnings in philosophy, such as Aristotle’s 
three laws of learning and memory th a t gave rise to associationism, but began as an 
experimental science in the late nineteenth century with the work of psychologists such 
as James [Jam90] and W undt [Wuii73].

Recently there has been a confluence of these two strands, but this has been accom
panied by the development of a number of applications leading to  a divergence in the 
literature. The original philosophical and psychological intentions of increasing knowl
edge and understanding still persist, but in addition there have been developments in 
teaching problem solving (both domain independently and domain specifically), using the 
results of research to improve the heuristics on various problem domains, using problem 
solving as a structuring mechanism within philosophy itself, and developing computer 
systems capable of solving problems. Many of these issues will be dealt w ith in detail in 
later chapters, as they are directly relevant to  the discussion of methods and improving 
pedagogical practice. In this section we will lay the foundations by introducing terminol
ogy and discussing some of the basic ideas common to all the approaches. In particular, 
we should note th a t the term  “problem solving” should strictly be “problem attem pting” , 
for it refers not only to successful activity but to  all activity with the goal of solution. We 
will restrict discussion here to individual problem solving, delaying discussion of group 
activities until Chapter Seven.
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Any discussion of hum an problem solving must lead us into the realm of psychology, 
no m atter how well disguised this excursion may be. In seeking to  ask how people solve 
problems we are effectively asking how people think and how this thought process governs 
action. For the purposes of this thesis, we will adopt Clark’s view th a t it is reasonable to 
partition the consideration of hum an thought into two parts, the “m ind’s eye view” and 
the “brain’s eye view” [Cla89]. As Clark puts it, “The mind’s eye view generates models 
based on our intuitive ideas about the kind of semantic object over which computational 
operations need to  be defined.” . The brain’s eye view, on the other hand, seeks models 
of thought th a t are directly related to  theories of the way the physical brain operates.

We will restrict attention to  the m ind’s eye view, thus ignoring how people actually 
think, considering only models th a t arise out of the semantic properties of the world 
being considered. One side-effect of this decision is th a t we will not pay much attention 
to connectionist models of thought, which have largely arisen out of neurobiology. We 
will only consider the more traditional models based on an information processing view 
of thought. Although this restriction undoubtedly removes much of interest from the 
discussion, the sta te  of the art in the philosophies of science and engineering, is still 
based largely on information processing models utilising von Neumann architectures, as 
are the current design methods in Software Engineering. It is certainly interesting to 
ask what a connectionist design method might look like, or whether a  life cycle might 
be replaced by a life network, but reluctantly these questions have to be deferred until a 
later date.

The decision to  adopt only a traditional m ind’s eye view does invite one m ajor criticism, 
however, namely th a t we are embracing “folk psychology” . We are, it might be said, 
accepting our intuitive understanding of people in terms of actions such as wanting, 
hoping, believing, and also accepting the concept of a state of mind. In many ways folk 
psychology is analogous to Hayes’s Naive Physics [Hay78] [Hay85] th a t allows us to exist 
in the real world. In this case, however, we are able to rationalise people’s observable 
behaviour in term s of convenient devices such as belief.

The adoption of folk psychology has been criticised on many occasions. Churchland 
[Chu81] and Stitch [Sti83], for example, raise the following objections. First, folk psy
chology fails to  explain behaviour outside of certain norms. It is culturally specific and 
does not address problems such as madness, senility, or the behaviour of very young 
children. This objection need not concern us, for we are interested in a restricted do
main of application, and our problem solvers comprise a fairly homogeneous professional 
body. We may well fail to  address issues such as the behaviour of the psychotic software 
engineer who deliberately sets out to sabotage a project, but it was never our intent 
to cover such m atters. The second objection is th a t folk psychology is a  sterile theory. 
It does not lead on to bold conjectures and possible refutation. This is undoubtedly a 
significant criticism for psychologists, but we are using the theory as an instrum ental 
structuring mechanism for a  discussion. The third objection is th a t folk psychology fails 
to provide a theory th a t cuts the world at its natural joints, thus it does not integrate 
well with the physical sciences, and in particular with biology and the neural sciences.
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Again, such integration is outside of our rem it, so the criticism need not concern us here. 
Of more significance, however, is the observation th a t folk psychology does appear to  cut 
Software Engineering at its “artificial joints” . Concepts such as memory, information 
processing, and requirements (wants or obligations) are present in both  the problems as 
presented and also in the solutions as implemented. This is not surprising since Software 
Engineering is an artifact th a t has arisen rapidly under the influence of humans who 
have accepted folk psychology unselfconsciously, and it has not yet reached the stage of 
m aturity  where such inherent assumptions have been widely criticised. The positioning 
of these artificial joints may not be accepted for ever, of course: questions such as how 
life cycle models relate to  the design of neural networks, for example, may well cause 
radical rethinking of the way we partition the engineering process.

Clark [Cla89, pages 37-59] presents a  comprehensive case for using folk psychology in 
circumstances where these objections can be overcome. He concludes th a t

“Thus construed, folk psychology is designed to  be insensitive to  any differ
ences in states in the head th a t do not issue in differences of quite coarse
grained behaviour. It papers over the differences between individuals and 
even over differences between species. It does so because its purpose is to 
provide a general framework in which gross patterns in the behaviour of 
many other weh-adapted beings may be identified and exploited. The failure 
of folk psychology to fix on, say, neurophysiologicaUy well-defined states of 
hum an beings is thus a virtue, not a vice.” [page 48]

One further criticism th a t might be levelled against our adoption of folk psychology in 
this thesis is tha t our goal of improving educational practice means th a t we should be 
interested in how people actually solve problems, not merely in abstract models, because 
we want to  change the real world. This is an interesting criticism because it raises 
the question as to how im portant an understanding of the way the brain works is to 
teachers. Certainly we would expect m otor mechanics to have some understanding of 
how a car works before they attem pt to improve performance, so why not expect teachers 
to  understand how the brain works. In the past, teachers, of necessity, have treated 
the brain like a black box into which something is to  be implanted. This implanting 
has taken place without consideration of the internal working of the box, mainly using 
tried and trusted  techniques, occasionally influenced by current psychological theories. 
If this situation were to change radically, so th a t teachers become neural engineers, the 
consequences would be so far reaching for education th a t this thesis would become totally 
irrelevant, consequently such an eventuality will not be considered here. It is a t this stage, 
of course, th a t the true relations between Software Engineering and Education would 
become apparent! The requirements of education could be specified by a client, designed 
and implemented by a “teacher” , using a person as the target machine. As Huxley and 
Orwell, amongst others, have noted, the technical problems posed by such a scenario 
would be the least of our worries. We will return to  this question in Chapter Seven.
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W hat is a Problem ?

Analysis of tlie concept of a problem is another complex task, and one th a t we will avoid 
here by accepting M ayer’s use of the term . He describes three characteristics th a t all 
problems possess [May83, page 4]

1. Gzueïîs-the information, states of objects, etc. inherent in the problem as posed.

2. Goa/s-rehect a desired sta te  in which the problem can be consiered solved. Con
scious thought m ust be involved in reaching the goal state  from the given situation.

3. Obstacles-the thinker m ust not already know the exact route from the givens to  the 
goals, bu t m ust use the facilities a t his or her disposal to  navigate round obstacles.

An im portant point to  note is th a t problems must involve conscious thought. Breathing, 
for example, does not pose a problem unless the obstacles present require thought to 
overcome them. Following on from this is the observation th a t, if we accept M ayer’s 
criteria, a problem for one person may not be a problem for someone else. The task of 
finding a chess defence in response to a particular opening may present a problem to a 
novice, but be a simple memory exercise to  a  m aster. Thomas notes th a t we should also 
include the desire to overcome obstacles and hence achieve some goal in our definition of 
a  problem. He observes th a t “the four-colour theorem was never “a problem”; it was a 
problem only for some people” [Tho89, page 318].

W ithin such a definition, a number of taxonomies of problems have been suggested. 
Reitman [Rei65], for example, classifies problems according to the degree of precision 
present in the stated givens and goals. The current state  of Computing is such th a t 
technology can only be used to  solve problems where both the givens and the goals are 
very specific and expressed in very simplistic terms. Most clients’ problems, however, 
are presented without this degree of precision, and the task of the software engineer 
can be viewed as transforming the original problem formulation into one the technology 
can handle. This task will usually involve translation, interpretation, restriction and 
refinement, amongst other devices.

Pearl presents a classification based on the type of goal given. A goal presented as 
a simple set membership (such as the eight queens problem) gives rise to a  satisficing 
problem. A goal which requires finding the supremum of some ordered set gives rise to 
an optimisation problem. A goal th a t involves finding values from a given set within 
some neighbourhood of the supremum is called a semi-optimisation problem. This class 
can be further subdivided into near-optimisation problems, where the value found must 
fall witliin the neighbourhood, and approximate-optimisation problems, where the value 
found m ust fall within the neighbourhood with some given probability. Clearly Software 
Engineering involves problems of all of these kinds. Correctness, for example, is generally 
presented as a satisficing problem, whereas efficient implementation is usually a  semi
optimisation problem. One point we should note here is th a t optim isation is carried out 
over some set (which we wiU call the satisfaction set). If a problem involves both kinds
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of goals (sucli as finding a correct and efficient implementation) then the satisfaction 
problem logically takes precedence over the optimisation problem. There are a  number 
of possible techniques we can use to  combine these problem types, such as finding a 
characteristic correct solution and then applying transform ations to  find a semi-optimised 
solution, finding the satisficing set and deriving an appropriate selector function, or using 
the optimisation problem to guide the search for solutions to  the satisfaction problem, 
thus allowing us to construct subsets of the satisfaction set. It is difficult to  understand, 
however, what it would mean to  tackle the optimisation problem first: finding the best 
wrong answer seems pointless.

A num ber of other classifications have been suggested. Bliaskar and Simon have distin
guished between semantically rich and semantically impoverished problems depending on 
the degree of relevant knowledge the solver possesses about the problem domain [BS77]. 
Munson identifies a  spectrum of problem types for pedagogical purposes [Mun88].

open-ended ==> egg race = >  curriculum dedicated closed

Open-ended problems have a variety of acceptable solutions due to loosely defined goals. 
Egg race problems have a variety of solutions, but quite specific goals. Curriculum ded
icated problems are set with givens, goals and obstacles th a t are intim ately tied to the 
intentions of the teacher. Closed problems have specific goals and also a very restricted 
num ber of acceptable solutions. It is also common to distinguish between adversary and 
non-adversary problems. In adversary problems there is a  rational opponent trying to 
defeat the problem solver. We will assume th a t the software engineer is never faced 
with problems of this kind, although this is an oversimplification. Problems motivated 
by military applications and attem pts to  establish security systems may all be carried 
out in hostile environments. Even system design in the commercial sector may some
times appear to the engineer to be adversary, particularly when the users or clients feel 
threatened by the project! We will return  to  the notion of “th rea t” in Chapter Seven.

We can also identify a problem classification determined by the software engineering 
solutions they give rise to. Lehman [Leli80] identified three types of program , and Pfleeger 
extended this classification to systems [Pfl87, pages 375-379]. We wiU extend the idea 
still further, and use the classification for the problems themselves. Like aU. classifications, 
of course, this is an abstraction, and thus simplifies the situation and creates boundaries 
where convenient rather than  where actually present.

An S-Problem  is one th a t we can solve exactly, and for all time. For example, the task 
of inverting a m atrix  is an S-Problem. The definition of matrices and their inversion is 
unlikely to change. The implementation of the solution may well change with technology, 
of course, but the specification of an acceptable solution to the problem is invariant.

It is often possible, however, to  understand a problem well enough to know exactly 
what needs to  be done to  solve it, but to realise th a t implementing the solution is not 
feasible using current technology. Consequently we do not specify an exact solution to 
the problem, but we abstract from the problem a simpler model th a t we can solve, in
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the expectation tha t a  solution to  this simpler case wiU be an acceptable approximation 
to the solution of the original problem. Such a problem we will call a  P-Problem, as 
its solution is based on a practical abstraction. The classical examples of such problems 
are usually found in Artificial Intelligence, such as the design of chess playing systems. 
The simplified model of the problem we devise can be treated as a  S-Problem , so we 
could consider the task of model selection as giving rise to  a  sequence of S-Problems 
th a t develops alongside technology.

S-Problem s and P-Problem s are both  posed in an application domain th a t is taken as 
fairly static. T hat is, we assume th a t the  theory of matrices and the rules of chess are 
fixed. For many problems, however, this assumption of an invariant problem domain is 
a gross simplification. The tasks of providing an acceptable management information 
system or designing a real-time control system for a  developing plant are examples of 
continuously changing problems. These involve the design of systems th a t to  be embedded 
within an obviously changing world. We will refer to  such problems as E-Problems, 
These give rise to the complexities of software maintenance, where a system has to be 
maintained as a  solution to  the current state  of the problem.

A final classification is th a t between routine problems, requiring “reproductive thinking” , 
and nonroutine problems, requiring “productive thinking” [Wer59]. The point is often 
made tha t teaching emphasizes reproductive thinking by setting, and assessing, routine 
problems [Duii45], but it is clear th a t many problems encountered by software engineers 
are nonroutine. One view of so-called design methods (or methodologies) is th a t they 
seek to provide routines for nonroutine problems. It will be argued th a t this approach is 
doomed to  fail unless the m ethod also serves to  educate the problem server. It wiU further 
be argued th a t in general this is an ineffective and inefficient approach to  education.

M odels of Individual Problem  Solving

One of the central questions of psychology is how people actually think when they are 
solving problems. This has resulted in a  number of models of thinking, the m ajor classes 
of which, using M ayer’s headings [May83], are briefly reviewed below. This topic is 
clearly relevant to the task of improving pedagogical practice, but it is also relevant 
to the questions of methods and theories, for the view we take of thinking affects the 
properties we require in design methods and specification techniques.

A ssociation ism

Associationism has its roots in Aristotle’s three laws of learning and memory th a t seek to 
explain thought in term s of ideas and associations between them. The three types of as
sociations identified were those of space and time, similarity and contrast. This idea was 
developed by Locke and Hobbs in the seventeenth and eighteenth centuries to  include the 
notions of atomism (ideas are atoms linked by associations), mechanisation (movement 
between ideas is determined automatically by the strengths of the associations), empiri
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cism (all ideas and associations arise from sensory perceptions), and imagery (since each 
idea is the result of sensory perception, movement between ideas m ust be understandable 
in these term s, such as a visual image).

Thorndike’s work on cats in puzzle boxes was taken as endorsing associationism, for 
he found th a t cats respond to  problems by a process of trial and error [Tholl], W ith 
practice, certain unsuccessful responses become less common and the more successful 
are tried earlier in the process. This supported the model of problem solving th a t had 
the problem situation (the stimulus) associated with a number of responses (or problem 
solving behaviours), with the responses ordered by some notion of strength. Under this 
model, learning is largely a m atter of adjusting strengths in the light of experience.

In its pure form, the associationist model fails to  explain the ways in which insight can 
lead straight to a  correct response without such a period of learning. To overcome this 
deficiency, the notion of covert responses was added, allowing undetectable responses to 
occur as the result of mind experiments until the correct response was identified and 
performed overtly. A great deal of research has been conducted to detect these supposed 
covert responses, and it has been suggested th a t they might be located in the muscles or 
the brain, but no conclusive evidence has been presented.

One of the im portant results to  come out of the associationist model of problem solving 
is the idea of a problem solving set. It is clear th a t a solver’s association hierarchy will 
be determined by past experience, bu t less obvious th a t the hierarchy will be dominated 
by experiences just prior to  the task. This has been taken to  imply th a t several hier
archies may exist, and recent experience may be the prime determ inant in selecting the 
appropriate hierarchy [Mal55, page 281]. Such a set is useful in solving repetitive routine 
problems, but may prove a m ajor hurdle in tackling nonroutine problems. Many of the 
heuristics suggested for improving problem solving performance are a ttem pts to remove 
this problem solving set when tackling nonroutine problems.

G esta ltism

The Gestaltists concentrate on an organisational view of problem solving. For them , a 
problem is solved by achieving a structural understanding of the givens and the ways in 
which they may be reorganised to  meet the goals. The unit of thought has thus shifted 
from being an association to being a structural organisation, and activity from being trials 
of responses to trials of reorganisation. It should be noted, however, th a t associationism 
concentrates on explaining reproductive problem solving, whereas Gestaltism  is primarily 
concerned with productive problem solving. The symptoms of problem solving set are 
also recognised in Gestaltism, but here they are explained in term s of functional fixedness. 
If a  component becomes, in the mind, bound into a particular rôle in a problem, then the 
solver has difficulty in seeing reorganisations in which the component adopts a radically 
different rôle.
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M eaning T h eory

111 Gestaltism, the organisation of a  problem situation is inherent in the components 
of the problem, and the solver is seeking relationships internal to  the problem. In the 
meaning theory model, however, the solver is seeking to assimilate the presented problem 
to schem ata already held in memory. Under this view, solving problems involves not 
only reorganisation to  m atch an existing schema, but also in terpretation of the present 
problem in terms of the components of the schema.

There is evidence th a t clues given regarding problem situations significantly alter the 
assimilation process. Bransford and Johnson [BJ72], for example, found th a t the com
prehension of text was greatly improved by the provision of a  title for the piece before 
reading, but providing a title after reading led to little improvement. Mayer [May75] 
applied a similar experiment to  the learning of a programming language, the results of 
which are discussed in a  later chapter. There is also evidence th a t imagery plays a sig
nificant part in the assimilation process. Translation of “be tte r” into spatial term s of 
“above” , for example, seems to lead to an improvement of problem solving performance 
[DLH65]. It is further suggested th a t integrated images lead to  better performance than 
piecewise representation of problem components.

Ausubel [Aus68] and Greeno [Gre73] identify two different kinds of schema. Meaningful 
(or propositional) schem ata contain concepts, whereas rote (or algorithmic) schem ata 
contain rules for operating on concepts. Assimilation into rote schem ata seems to lead 
to a  better problem solving performance on reproductive problems, but to  poorer perfor
mance on productive problems. Assimilation into meaningful schem ata, however, leads 
to better performance on productive performance, but not such a good reproductive 
problem solving performance.

This evidence suggests th a t the initial perception of a problem is crucial in determining 
problem solving performance for different kinds of problems. This is clearly of significance 
to the task of teaching problem solving, but it is also im portant for the activity of writing 
specifications. It has been noted th a t making problems descriptions concrete in different 
ways leads to different methods of solution, indeed, many of the heuristics suggested 
for improving problem solving performance are based on the idea of finding appropriate 
representations and images. If we accept th a t specifications of requirements and designs 
are both statem ents of problems to  be solved then we should expect th a t different ways of 
presenting a specification will lead to  different solutions of the problem. This observation 
causes us to ask what it means to  suggest th a t “specifications should specify what and not 
how” , and whether such an objective is achievable. This question is discussed in Chapter 
Five, where we will trea t theory presentations as the basis of problem descriptions.

One of the m ajor applications of research on meaning theory as a model of problem 
solving has been in curriculum development, and has given rise to the current trend 
for learning by discovery, leading to assimilation into meaningful structures, rather than 
learning by exposition, leading to assimilation into rote structures. Such an approach, 
it is claimed, leads to  transferable skills. Although there is evidence to  support some of
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the principles behind this claim [EN69] [GB61] [RS68], the claim is as yet unsupported 
by empirical testing. We wiU proceed, however, on the assumption th a t such a claim is 
justified.

The current sta te  of psychology is such th a t there is still no real understanding of 
schemata. It has been suggested th a t a  schema can be considered as a  hierarchy con
taining slots into which concepts can be fitted. Kintsch [Kin74] and Meyer [Mey75], for 
example, suggest th a t the understanding of English sentences is carried out by assimila
tion into schem ata related to the gram m ar of the language, with the deep structure of 
the text dominating the hierarchy. Rum elhart [Rum75] and Thorndyke [Tho77] extend 
this idea to  whole texts, by suggesting th a t the listener makes use of a story gram m ar 
comprising a setting, a theme, a plot, and a resolution.

It is interesting to speculate whether similar structures exist for understanding descrip
tions of information systems. For example, a  fairly common notion in formal specifica
tions of information systems is th a t of a  signature, so it might be suggested tha t this is 
one component of such a situation gram m ar. An obvious candidate for a whole gram m ar 
is th a t of the von Neumann architecture. Many descriptions of information systems cen
tre  on concepts such as da ta  flow, memory and processors, and it seems likely th a t many 
readers of specifications struggle to  fit what they are reading into this classical situation 
grammar.

Inform ation  P rocessing  M odel

The final model we wiU consider has arisen out of the conjunction of Psychology and 
Computing; the information processing model. This model has been developed for two 
purposes. First, to facilitate the autom ation of the reasoning process, and second to  allow 
psychologists access to an autom ated model of the hum an’s processes for experimenta
tion. Unlike the previous models, however, this one makes no real a ttem pt to explain the 
thought processes involved in solving problems, but rather to  provide a structuring mech
anism. Instead of concentrating on the processes involved, the information processing 
model considers the path  to  the solution of a problem as a number of information states 
tha t must be passed through, starting with a sta te  representing the given problem, and 
ending with a state  representing an acceptable solution. In general, a common represen
tation is used for aH the problem states, and the totality of these states is referred to  as 
the problem space. The problem solving task is thus reduced to a  state-space traversal 
exercise.

Several strategies exist for traversing the problem space. The least sophisticated is one of 
trial and error, where legal transform ations are applied to each current s ta te  to  generate 
a chain of states in the  hope th a t the goal state  will eventually be reached. Very naive 
hacking may be seen as a  trial and error process, where changes are made a t random  in 
the hope th a t the program will eventually work, although the problem space for most 
real designs is so complex th a t trial and error is really not possible. More sophisticated is 
a  process of hill-climbing, where only transform ations th a t lead “towards” the goal state
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are applied. Altliougli this may seem intuitively more attractive than  trial and error, 
there is the danger th a t hill-climbing may lead to local maxima, from wliich further 
progress is impossible. Refinement can be modelled by a form of hill-climbing, where 
the problem state  is progressively transform ed from a specification to  an executable 
program. The goal state  for the refinement process is usually taken to be correct code, 
th a t is efficiently implemented on a specified target machine, where efficiency has a 
variety of possible interpretations. The literature on refinement to  date has concentrated 
on correctness and implement ability on sequential machines, with some attention to 
efficiency of storage and algorithm performance. Although liill-climbing may lead to  local 
maxima, most problems tackled by refinement are approximate optim isation problems, 
and the local maxima are taken to  fall within the acceptable neighbourhood. No research 
seems to  have been carried out into this assumption. Refinement is also limited in the 
problem areas it can tackle, for appropriate transformations need to be defined for each 
representation domain, and currently there are no suitable transform ations for domains 
involving real-time constraints, fault-tolerance, distribution of processing and storage, 
hum an-computer interfaces, and many other features required of systems.

A more sophisticated technique is means-end analysis. Here the problem solver identifies 
not only the goal of the exercise but also the obstacles standing in the  way of achieving 
them. Overcoming these obstacles is then taken as establishing a new set of goals which, 
if met concurrently, will lead to the solution of the original problem. Methods of func
tional and d a ta  decomposition can be seen as means-end analysis, effectively dividing 
the problem up into subproblems.

3.3 D iscou rse  T h eory

The final body of knowledge in which we will analyse Software Engineering is th a t of 
discourse theory. Like the philosophy of technology and problem solving, this body of 
knowledge is still very much in a preparadigm atic stage: th a t is, there are no generally 
accepted frameworks within which to  evaluate new ideas. The discipline is still a t the 
stages of proposing such frameworks, and trying to support these with the same sub
stantive facts th a t the frameworks are trying to explain. Some aspects of discourse have 
certainly been explored and reached a level of m aturity, but when this happens the topic 
tends to  have been removed from the domain of discourse theory per se and subsumed 
under more m ature disciplines. Logic, for example, has its roots in discourse, but in the 
early part of this century it became a focus of attention in philosophy departm ents, and 
later in m athematics departm ents. Similarly the literary aspects of discourse tend to 
have been subsumed under literature.

There is no doubt th a t Software Engineering can be considered as a  process of discourse. 
From its earliest beginnings. Computing has adopted much of the culture and term i
nology of discourse. We speak, for example, of programming languages, specification 
languages, syntax, semantics, and interpretation. Early models of computer systems
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were based on the ideas of layers of language. More recently, the rôle of linguistic sys
tems has been recognised as fundam ental to  the process of software design [TM87]. One 
of the problems, however, is to  recognise th a t this process of discourse has to  be viewed 
holisticaJly initially, which means th a t we want to  consider discourse theory at a  stage 
prior to th a t at which significant components were transferred to  other disciplines. We do 
not want to  consider “literate programming” [Knu84], for example, by analogy to English 
Literature, but as an equally valid application of a fundam ental theory to  a  particular 
domain. Less obviously, science too has its roots in discourse, and m any of the problems 
we have observed in attem pting to  apply the Philosophy of Science to  Computing might 
have been avoided if a general theory of scientific discourse had preceded th a t of the 
theories of the natural sciences.

In the discussion th a t follows, attention has been restricted to  just one theory of discourse, 
th a t of Kinneavy [Kin84]. The primary reason for the selection of this particular theory 
is th a t it seems to  have been developed largely by consideration of the common ground 
with other theories, and Kinneavy constantly reinterprets his statem ents in term s of 
other views of discourse. Thus anyone wishing to  develop the discussion with alternative 
theories of discourse should have b ttle  trouble in so doing.

K in n eavy’s T heory o f D iscourse

Before outlining the structure of the theory, we must delimit the scope of the concept 
of discourse. The terms “communication” , “rhetoric” , “composition” , and m any others, 
have aU been used to denote what Kinneavy means by “discourse” . He restricts a tten 
tion, however, to  fuU text situations. T hat is, he is not concerned with fragments of 
sentences, or single utterances. The backbone of his theory is a  classification of different 
types of discourse into a coherent framework, together with the organisational structure, 
characteristics, and underlying logic for each type. We wiU briefly review the whole 
theory, and then extract just one type of discourse for a more detailed analysis.

T h e U n derly ing  M odel

Kinneavy adopts a fairly conventional starting place for his theory, by accepting as given 
the communication triangle shown in Figure 3.1.

This model has been used in one form or another since the very beginnings of studies in 
discourse. Aristotle adopted the triangle as a  basis for the analysis of rhetoric, Carnap 
uses it for his work on semantics and pragmatics, Carnap and Shannon use similar 
models for their work on information theory, (with the addition of ex tra  concepts such 
as encoders, decoders and noise). It has also been widely adopted for the teaching of 
communication skills and literary criticism.

Using this model, Kinneavy structures the consideration of communication into study of 
the signal, syntactics] study of the correspondence between signal and reference, seman-
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Figure 3.1: The Communication Triangle

tics’, and study of the uses to  which communication is put, pragmatics. His theory of 
discourse is concerned primarily with pragm atics, and includes semantics and syntactics 
only where they impinge upon this. Kinneavy thus forges a  distinction between discourse 
theory and linguistics, the la tte r concentrating on the syntax and semantics of discourse.

T h e A rts and M edia o f  D iscourse

Kinneavy uses the terms “arts” and “media” to distinguish between the signal (eg. the 
written word or the spoken word) and the channel (eg. the newspaper or the radio pro
gramme). He excludes from his arts the act of thinking, asserting th a t thinking pervades 
the whole of communication but is not itself simply one of the skills th a t enables dis
course. He asserts th a t attem pts to  include thinking as an a rt of discourse is to  trivialise 
it, and usually reflects a fundam ental flaw in the underlying model which is being used, 
namely the omission of thought from the model in a more significant rôle. His argument 
is is th a t the omission of a treatm ent of thought in language teaching, for example, is a 
fundam ental error, caused by the separation of language teaching from discourse. This is 
a very subtle, but powerful, argum ent, and one th a t we should remember when we come 
to discuss the teaching of topics such as specification languages, where a criticism can 
be levied th a t the skills of using notations are often isolated from the thought processes 
tha t should pervade the whole activity.

One of the limitations of Kinneavy’s consideration of arts and media, however, is tha t 
he restricts attention to the written and spoken word. This is understandable, since in 
1971 these were taken as the primary modes of discourse, but an interesting extension to 
his discussion would include hypertext, where the structure of the discourse is inherent 
in the art to a  greater extent than  in conventional written texts, and also symbolic 
simulations, where the logic of the text is presented explicitly, for example, as a set of 
rewrite rules. Rather less understandable is Kinneavy’s omission of drawing from the
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arts of discourse. We will include these, as many of the discourse processes in modern 
Software Engineering, rightly or wrongly, are founded upon pictorial arts, often using 
the media of computer screens.

M odes o f  D iscourse

To perform adequate abstraction of texts for discussion, Kinneavy recommends th a t we 
ignore the subject m atter of the tex t, such as “tliis is a physics book” , and move towards 
a more generic classification, “this is a  description of something” , or “this is a  story 
about something” . He refers to  these classifications as the modes of discourse, or more 
traditionally, the forms of discourse. Bain, in 1867, identified four such modes: narration, 
argum entation, exposition and description. Kinneavy adopts the term s “narration” , 
“classification” , “description” and “evaluation” for these four modes. It is im portant to 
realise th a t Kinneavy is separating the modes of discourse from the purpose of utilising 
the mode. An evaluation, for example, could be used to tease out a  description, to  
persuade someone to buy a product, or to  act as a  scientific proof. Many “stories” in 
English literature have been written with aims far beyond the amusing of an audience 
with a yarn.

Descriptions in Software Engineering are used for several purposes. A system specifica
tion, for example, is usually written using a descriptive mode. It may have as its aim 
that of persuading a client to purchase the system. A specification may also be used, 
however, to inform an engineer of what is to  be built, or to  convince an engineer’s peer 
group th a t the specified system has particular desirable properties. It is im portant to 
realise th a t the aims of the discourse, as well as the mode, give rise to its properties. For 
example, one of the m ajor criticisms of formal notations as a  basis for specifications is 
th a t they inhibit the conveying of information to a  client, who is unlikely to  be conver
sant with the notation being used. This criticism is based on the fallacy of inferring an 
aim of discourse simply from the mode, for the aim  of descriptive discourse may not be 
information passing. To understand this more fully we must consider the possible aims 
of discourse.

T h e A im s o f  D iscourse

Kinneavy identifies the aims of discourse by consideration of the features of the commu
nication triangle, stressing th a t these aims are rarely found in isolation but th a t most 
discourse has a primary aim th a t can be classified into one of three kinds. Concentration 
on the encoder or decoder gives rise to  two kinds of people discourse: if the encoder is 
emphasised, then the aim is said to  be expressive, if the decoder is emphasised, then 
the aim is said to be persuasive. W hen the focus of attention is on the reality to which 
the discourse refers, however, rather than the people involved, then the aim is said to 
be reference. Moreover, each of these aims has its own norms within which discourse is 
evaluated. Thus advertising, whose primary aim is persuasive, should be evaluated as
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such, even if a secondary aim is to  inform potential customers of the a ttribu tes of a prod
uct, and is therefore one of reference. Applying the norms of science, where reference is 
param ount, to  advertising, where persuasion is the aim, is to  completely miss the point 
of the discourse.

Discourse of aU three kinds can be found in Software Engineering. Expressive discourse 
is not obvious in the discipline, although it seems likely th a t m any of those who program 
for fun do so because they are expressing themselves through their programs, just as 
poets seek to  do through their poetry. Certainly the impression given by m any systems 
programmers is th a t they trea t “their” code as extensions of themselves, remaining un
worried by the existence of anyone else who can understand what they have written. 
Kidder quotes a professional programmer as saying

“I loved writing programs. I could control the machine. I could make it ex
press my own thoughts. It was an expansion of the mind to have a com puter.” 
[Kid82, page 90]

We should not pass value judgements on this activity per se, but we can observe th a t 
problems are likely to  occur if the sender’s aims are different to  those of the recipient. 
Expressive discourse is quite respectable in computer a rt and music, and there is no 
reason to  deny anyone the pleasure of expressing thoughts in any medium, bu t we must 
recognise the limitations of expressive discourse, and ensure th a t professional software 
engineers are aware of them  too.

Persuasive discourse is present in most sales activities, and also in many project m an
agement techniques. It may also play a part in the writing of user manuals, where the 
aims of discourse can be quite complicated. Many people assume th a t manuals are in
tended to be informative. Modern m anual writers, however, have also adopted the aim 
of persuading the users th a t the product is “good” , and also th a t anyone can learn to 
use it. The hyper card User’s Guide, for example, informs its reader th a t

Any piece of information in HyperCard can connect to  any other piece of 
information, so you can find out what you need to  know in as much or as 
little detail as you need.” [App87, page xvi]

A truly wondrous product!

Another place where persuasive discourse can often be found is in the discourse surround
ing peer review of systems. Many software engineers confuse the true aims of activities 
such as system walk-throughs with those of convincing colleagues th a t a system is cor
rect. The true aim of a  walk-through should be to try  to find faults with the system 
(a scientific aim in the tradition of Popper). Persuading colleagues th a t the system is 
fault-free achieves nothing of scientific value unless the designer has been scientifically 
honest, by assisting in the process of seeking out refutations. This confusion of aims 
is often attributable to project management methods, such as the imposition of dead
lines without genuine quality milestones associated with them , and also to  the loss of
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innocence described earlier. Engineers must now take responsibility for tlieir actions, 
consequently their reputations, and possibly their career progressions, are at stake when 
their work is subjected to review. The tem ptation to protect this reputation is often too 
great, and the risks of being found out quite small. Most companies are not prepared to 
spend resources in tracking down the culprit when an error is detected: frequently even 
the m aterial cause of the error is never identified, only the symptoms are addressed. It 
is only with the realisation th a t safety critical systems are being designed using these 
attitudes and approaches th a t the serious déficiences with this way of proceeding are 
being recognised by the software industry at large.

It is also possible th a t some engineers regard system specifications as persuasive discourse, 
in the sense tha t the specification should persuade the implementor to  construct the 
system the specifier had in mind. Another view is quite different to this, namely tha t 
there should be no element of persuasion at all. The implementor should read the 
specification simply as a piece of reference discourse, and should be free to  implement any 
system th a t meets the specification. This is an interesting issue, for most specifications 
actually have both aims, as we shall see below.

We should note in passing th a t Hoare and Naur both appear to  have been engaging in 
persuasive discourse in the papers discussed earlier. Moreover, many of the  publications 
in the literature of Software Engineering are of this kind. Scientists, ostensibly at least, 
present theories without appearing to  persuade readers th a t the theories should be be
lieved: it is the evidence th a t causes the reader to  believe the theory, and this evidence 
should be presented honestly. Many publications in Software Engineering, however, ap
pear to be selling an idea, notation, m ethod, or machine. The virtues are expounded in 
full detail, the limitations are frequently om itted altogether. This is a cultural problem 
for the discipline, for even those authors who are extolling the virtues of a scientific 
approach add to the body of unscientific literature associated with the subject. This is 
often cited by opponents of scientific approaches as inconsistent, for they have failed to 
grasp the distinction between scientific discourse and discourse (of any type) about sci
ence. Although this does not give rise to an inconsistency by the proponents of scientific 
approaches, it does tend to  dilute the scientific literature still further. This problem does 
not arise to  the same extent in other sciences, where the unscientific discussion has been 
partitioned off as philosophy.

Most of the discourse used in the technical aspects of Software Engineering, however, has 
reference as its primary aim. For this reason, we will focus attention in the next section 
on a more detailed discussion of reference discourse.

R eference D iscourse

Reference discourse, although subservient to  the central aim of referring to reality, can 
be considered as being of three kinds, depending on the perception of reality being used.
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In fo rm a tiv e  D isco u rse ; If reality is perceived as known, and the discourse is conveying 
facts about this reality, then the aim of the discourse is informative.

Scien tific  D isco u rse : If this information is forged into a  coherent system, and pre
sented in such a way th a t a demonstration of its validity is possible, or even ac
companies the information, then the aim of the discourse is scientific.

E x p lo ra to ry  D isco u rse ; If the reality is not known, but is being looked for, then the 
discourse is exploratory.

This classification appears to  be unique to  Kinneavy’s theory of discourse, but turns 
out to be extremely useful in discussing Software Engineering, where all three kinds of 
reference discourse are readily discernible.

S cien tific  D isco u rse

We have already discussed many of the attributes of scientific discourse during our trea t
m ent of the Philosophy of Science. We should note, however, th a t Kinneavy assumes 
th a t there is such a thing as “science” , rather than  various sciences each giving rise to 
different types of discourse. In treating the same reality, the various scientific disciplines 
will certainly bring different paradigms to  bear, and interpret results accordingly, but 
the resulting discourse processes, typically the pubhshed papers, will conform to certain 
accepted norms, such as the style of presentation and the reduction of the rôle of the 
scientist. Frawley goes so far as to  say th a t “science is discourse” [Fra86, page 68], a 
view th a t Feyerabend disputes, observing th a t this is a limited view of science as involv
ing only third world entities and ignoring the importance of the second world [Fey70a, 
page 28].

If we accept scientific discourse, in this sense, into Software Engineering then we are 
accepting a set of norms for this discourse process. Acceptance of these norms is by no 
means universal even amongst scientists. Medawar, for example, questions the value of 
the accepted styles in scientific discourse [Med64]. Feyerabend goes further, and calls 
into question many of the norms of science itself [Fey87].

One im portant question concerning scientific discourse is whether it should seek to ex
plain reality, or simply to  describe it. The view th a t scientific discourse should only 
describe was prevalent until the tu rn  of the century, and can be found, for example, in 
the writings of Pearson [Peall]. Current thinking, however, is th a t scientific discourse 
must seek to explain as well as to  describe, it m ust therefore seek to  present theories^ not 
just facts, or, at least, to present facts within the framework of some already presented 
theory. Exactly what constitutes an appropriate theory for this purpose we will discuss 
later. Kinneavy also notes th a t there is nothing in the nature of theories th a t rules out 
any of the modes of discourse. Scientific discourse can be narration, description, evalua
tion or classification, each of which can be based on underlying theories. This endorses 
the view of many proponents of formal methods in Software Engineering, who claim that
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formal specifications, although descriptive, should be scientific as well as informative. 
We shall add to this the claim th a t they should be exploratory as well.

The logics suggested as underpinning scientific discourse are well documented elsewhere. 
They have generally been deductive logics, which operate a t the syntactic level of dis
course, and inductive logics, which are semantic. Kinneavy raises the question of a 
pragm atic level of logic, which seeks to  provide foundations for the uses of scientific 
discourse. This would seek to  capture aspects of the proof such as how it changes the 
decoder’s beliefs. Logics with dialogue Interpretations, such as the infinite value logic 
of Lukasiewicz, may provide a basis for further research in the area [Gil81].

The inclusion of pragmatics into proof allows us to elevate the discussion of proof above 
the “how” (the syntactic details of the formal system) and the “w hat” (the semantic 
details of the interpretation) to consider the “why” (the reason for taking particular in
terpretations, and why a proof is of any value in a particular context, for example). In 
traditional scientific discourse, such discussion is rarely carried out. Most scientific pa
pers, for example, set out what is to  be proved without justification, and discuss the proof 
as if the method were taken for granted. Software Engineering, however, has not evolved 
through such a scientific culture, consequently many Software Engineers frequently do 
raise such issues. Faced with the existence of systematic frameworks for the discussion 
of syntactics and semantics, but no suitable framework for discussing pragm atics, these 
software engineers understandably often slip back into a rigorous discussion of easier as
pects of the problem, or content themselves with a non-scientific treatm ent of the harder 
ones. There have recently been attem pts to  change this state  of affairs. Work by Co
hen and P itt, for example, seeks to  discuss proof obligations in Software Engineering, 
and to relate proof mechanisms and interpretations to  the use of formalisms in Software 
Engineering [CP90b][CP90c][CP90a]. This work is still in its infancy, but some very 
interesting ideas are put forward th a t are considered later in this thesis.

The traditional view of logics is th a t their use is culturally independent. This view is 
no longer given the same credence, however, and it is now accepted th a t although the 
unity of scientific logic may well be an ideal, we m ust accept th a t scientists may have 
to work within an existing culture, which embodies its own logic, whilst moving towards 
this ideal.

This presents us with another problem, for, whilst physicists have well established sets of 
norms, developed and passed on primarily through a m ature academic discipline. Soft
ware Engineering has a variety of “logics” in use. Many Software Engineers learnt their 
trade through apprenticeships, and hence picked up a craft culture, some are m athe
m aticians, some are electrical engineers, some are classics scholars: the list is endless. 
Furthermore, many of the environments within which Software Engineering is practised 
provide their own logics: the logics of company economics and of research council fund
ing being two examples th a t have significant impact on the ways in which Software 
Engineers work. This diversity of backgrounds ensures th a t Software Engineers do not 
blindly accept particular logics as underpinning their scientific discourse. As the disci
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pline develops, however, we are increasingly being expected to  develop cultural norms. 
Unfortunately this development is often interpreted as the need for a seemingly ad hoc 
selection from the norms currently represented.

Informative Discourse

The aim of informative discourse is th a t of conveying information to  the recipient, who 
is thus allowed to intrude into the process. This information may be conveyed by a t least 
three aspects of the discourse,

• The structure of the discourse m ay convey information: the ordering of concepts, 
for example, may be taken as providing a structure within which they should be 
interpreted.

• The components of the discourse wiU themselves convey information.

• The subjective background of the recipient wiU provide information th a t may be 
invoked by the discourse.

The syntax and semantics of informative discourse wiU not be discussed here, as they are 
weU covered in the literature of linguistics, but the pragmatics of informative discourse 
does require a brief discussion. The pragmatics of informative discourse has to  consider 
information transfer to a real, rather than  idealised, receiver. Semantically, for example, 
a tautological expression carries no information. Pragmatically, however, it may convey 
information if the recipient was unaware of the tautology at the time of receipt. The 
pragmatics of informative discourse, therefore, needs to adopt a  different method of 
measuring information content from th a t of information theory. Kinneavy suggests th a t 
surprise value should be used. The tautology h P  <=> P  is of little surprise to most 
people who understand the notation, whereas more complex tautologies may well be 
surprising, and hence more informative.

This intrusion of the recipient into the discourse process is in stark contrast to the situa
tion with scientific discourse, where scientists intentionally try  to  minimise the intrusion 
of people. In writing a specification as a piece of informative discourse, therefore, the 
writer should be cognizant of the potential readership; in writing a specification to act 
as a scientific theory presentation, however, scientific style dictates th a t the readership 
should not be unduly considered. This raises the question as to whether one specification 
can have both aims. We will sidestep this question by suggesting th a t the concept of a 
specification is not as central to  system design as is currently implied by most models of 
the design process. In fact, it will be suggested tha t specifications should be dependent 
upon theories, and th a t these theories can have many presentations, some of which will 
be aimed at scientific discourse, some at informative discourse, and some at exploratory 
discourse. This shift from specification to explication is essential if Software Engineering 
is to adopt the rationalist approach of modern science.
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The structure of informative discourse cannot be given by the facts to be presented alone, 
which are isolated, but only from some extra-factual source. In scientific discourse, 
the structure is often dictated by the logic being used to  support the arguments. In 
informative discourse there are several possible sources for the discourse structure. It 
could be supplied by some theoretical understanding of the facts, either held by the 
writer or assumed by the reader. It could be provided by the adoption of large scale 
m etaphor in the discourse, where the information to  be conveyed is presented in the order 
dictated by the m etaphor. Both of the above structuring techniques imply a structure 
into which the reader can assimilate information as it is received. Another common 
structuring mechanism is th a t of presenting information according to  some concept of 
importance. Again this involves the adoption of a  theory, in this case an axiological 
theory. This approach is often used to  m otivate the reader. In term s of assimilation 
structure, however, the reader is left to  devise this as information arrives, and one hopes 
th a t the importance hierarchy devised by the writer will map in some sensible way to 
a possible assimilation structure. An area where this frequently fails to  occur is when 
cultural boundaries are being crossed. Software Engineers carrying out requirements 
analysis, for example, are often presented with information seen as im portant by the 
users, but need to seek out the information they need to s ta rt the process of building a 
suitable assimilation structure. One often used measure of importance is th a t of surprise 
value, presenting the most surprising facts first (a common journalistic device). Where 
completeness and ease of referral is im portant, some form of mechanical ordering may 
be used, such as alphabetical or dateline orderings.

Exploratory Discourse

Kinneavy’s decision to identify exploratory discourse as distinct from scientific discourse 
is unusual. Most views of science include both discovery and verification, therefore it 
might seem th a t scientific discourse should include discourse with exploratory aims. In 
practice, however, the views of the exploratory process are usually restricted to  the 
results of the process, the conjectures, and because the philosophy of science has trad i
tionally been phrased in term s of individual scientists, rather than  teams of scientists, 
the discourse processes leading up to  these results has been marginalised. Popper, for 
example, has his Logic of Scientific Discovery, which covers the presentation of conjec
tures, the selection between rival theories, and the attem pted refutation of theories. His 
account does not extend back to  the jottings of scientists where half-formed conjectures 
are being assessed, where terms are being refined in meaning, or where the scientist is 
playing with ideas in very “unscientific” ways, waiting for inspiration. It is considered 
useful for the purpose of this thesis to  have a category of pre-scientific (in the Popperian 
sense) discourse th a t can be considered part of the scientific process, and Kinneavy’s ex
ploratory discourse fits the bill well. This type of discourse actually fits more naturally 
into Lakatos’s view of Science, where anomalies and contradictions form an accepted 
part of science within research programmes.
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The logic of exploratory discourse is hard to  identify. We can use deduction, for example, 
to explore the consequences of adopting certain views, thus embedding scientific discourse 
into the exploration process, but the m otivation tha t leads us to  select what consequences 
to  explore, and the justification of this choice, is founded in the logic of exploration. 
Keltner suggests th a t the logic of discussion is one of problem solving [Kel57, pages 32- 
34], but there is more to exploration than  just discussion. One of the m ajor differences 
between exploratory and scientific discourse is th a t when exploring we may proceed in 
the full knowledge th a t our theories are contradictory, suspending disbelief in order to 
gain further insights into the problem being approached. In science, however, deduction 
based on inconsistent premises is rarely intentionally carried out. Another difference is 
tha t in exploratory discourse it is quite common to accept tentative, or even ambiguous, 
semantics, relying upon the discourse process to  identify the areas th a t need refinement. 
We may also use m etaphors, analogies and models widely to  provide shared frameworks 
for discussion of novel ideas. Possible candidates for logics to  underpin exploratory 
discourse include those based on statistics or fuzzy mathematics [SchSl].

The structure of exploratory discourse is hai*d to generalise. It is likely to be more 
fragm entary than informative or scientific discourse, and also to have a large number 
of “if . . .  then . . . ” type structures, but basically there are as m any ways of structuring 
explorations as there are ways of thinking. We can, however, observe th a t there is likely 
to be a fundam ental difference between exploratory and scientific discourse structures. 
The starting point for scientific discourse is usually a theory. This theory is then used 
to derive refutable statem ents. In exploratory discourse, however, we are presented with 
an ad hoc collection of facts to  be understood and explained. One way of doing this is to 
construct a deductive system, a theory, th a t is based upon a few established facts, and 
from which the other facts can be derived. This is a creative process: we m ust design 
a theory, but like all design “the creative process is sometimes immeasurably facilitated 
by borrowing suggestions from another deductive or inductive system wliich seems to  
have similarity to the one under construction. Such a borrowed system is a ‘model’. ” 
(page 144). For it to  be useful, we m ust already be familiar with the model we are 
borrowing, for we want to  transfer details from one domain to  the other.

“This transfer can be in several directions. The model can help to secure a 
relatively unstructured domain, or simplify a  domain, or complete a  domain, 
or explain a domain, or concretize a too abstract domain, or abstract a too 
concrete domain, or enable a  domain to get a complete picture of its own 
framework, or allow experimentation where the domain does not perm it i t.”
(page 144)

The use of models in exploratory discourse is clearly analogous to the structuring mech
anisms suggested in the previous section for problem solving. It also turns out to be 
analogous to the use of theory building, for theory presentations are just models. We 
will return to this issue in Chapter Five, where we will seek to reconcile notions such as 
theory, model and analogy.
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In practice, exploratory, scientific and informative discourse are not usually separately 
observable in the scientific process. They merge as explorations lead to  a tentative 
hypothesis, which is gradually firmed up, communicated as information, and submitted 
to  public attem pts a t refutation. A useful insight may be gained here by appeal to  the 
literature of neural networks, for the process of training a network can be facilitated 
by the use of simulated annealing. We sta rt the network running in its training mode 
with a high tem perature (th a t is, a  large amount of noise), and gradually cool it down 
as learning takes place. This attem pts to  overcome the problems associated with the 
network stabihsing in a  local minimum state, rather than continuing to  seek better 
solutions [AM90, pages 112-130]. Tliis can be illustrated graphically as in Figure 3.2.

In a warm system, 
noise perturbs solutions, 
and local minima may 
be avoided.

In a cool system, 
solutions may settle 
in a local mimimum

Figure 3.2: W arm and Cool Learning

Similarly we can see exploratory discourse as the activity of the warm  learning pha^e, 
where noise is deliberately allowed into the system, not only because we do not know how 
to exclude it, but also because it helps us to find better solutions. Once we believe we 
have trained ourselves (tha t is, we have found our theory), we seek to exclude noise by 
adopting informative or scientific discourse, content to sit in a  stable, if local, minimum. 
This notion of simulated annealing will recur in various guises throughout the thesis.

3.4 Sum m ary

This chapter has, of necessity, been rather fragmentary, for it has surveyed a number 
of disparate bodies of knowledge, and no suitable structure exists for reconciliation of 
the issues raised. The next chapter seeks to  provide such a structure suitable for the 
limited aims of this research. The m aterial covered in this chapter forms a resource to 
be drawn upon by subsequent chapters, and, in particular, it has established some useful 
terminology.

A recurrent theme throughout this chapter has been the relationship between the person 
and hum an activity, whether it be designing, solving problems, or engaging in discourse.
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This is undoubtedly one of the most complicated issues being addressed in this thesis, 
and is the focus of Chapter Seven. In 1981, Tweney et al made the point th a t “the 
psychology of scientific thinking is coming into existence” [TDM81, page 1]: this chapter 
may be viewed as providing a num ber of research programmes th a t it can pursue.
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C h a p ter  4

A  M odel o f S ystem  D esign
“Discovery consists o f seeing what everybody has seen and thinking what 
nobody has thought”

Albert Szent-Gyorgyi

The previous two chapters have contained wide-ranging discussions drawn from several 
disciplines. Although these discussions have all been m otivated by the task of achieving 
a be tter understanding of Software Engineering, and have been carried out using well- 
established frameworks from these disciplines where possible, they undoubtedly appear 
to lack coherence and structure. In this chapter the intention is to  s ta rt pulling these 
strands together. It should be stressed th a t no attem pt will be made to do this at a  deep 
theoretical or philosophical level, a task far beyond the scope of this thesis, but rather 
a model of system development wiU be proposed within which the rôle of the various 
topics discussed can be identified. Broadly spealdng, the proposed model should

• admit the discussion of a  scientific basis for Computing in the sense of Popper.

• establish where the more traditional engineering aspects of Software Design can be 
located, and how the technological basis for a  design fits in.

• identify the principal areas of reference discourse in the process.

• recognise the central rôle of problem solving in the whole subject of software system 
design.

In addition to facilitating the structuring of the  thesis itself, the model should also be 
useful for teachers of Computing as a structuring mechanisms for presenting m aterial, 
and consequently for learners as a  provider of schemata into which m aterial m ay be 
assimilated. It is not intended, however, th a t it should also be useful for those charged 
with the task of managing or accounting large development projects, or those trying to  
design CASE tools or software factories. The relationships between between this model 
and other kinds of model, including planning models such as life cycles, will be discussed 
in Chapter Six.

It is intentional th a t this model is developed around very simple ideas, and not used to  
explain all the details of "real" projects. There are several rationalisations for this:
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• The ideas will scale up, for large problems are just an aggregate of lots of small 
problems.

• In real problems, management plays a  dominant rôle, often obscuring the technical 
processes th a t are taking place.

• Real projects are part of the software crisis. W hat is needed is a simpler model 
from which improved ways of proceeding can be found.

These are just rationalisations, however, and the honest reason for this decision is a 
belief th a t we should teach through simplified models. AU other disciplines accept such 
models without question. Physics has its frictionless planes, point masses, and infinite 
wires, for example, and chemistry has ideal gases. Most engineering disciplines sit upon 
such sciences, and hence build upon these simplified models. Computing seems to  be 
unique in its bizarre pursuit of “reaUty” from day one. This may be due in part to 
an irrational response to  the political pressure to  provide vocational training, but the 
consequences are far reaching. For example, we have put computer systems into schools 
th a t dem onstrate aU the intricate features of real machines^, we have used badly de
signed, if popular, programming language to introduce students to  programming, and 
we have used design methods th a t are ill-founded, unstable and described in vast arrays 
of manuals to  introduce the concepts of design. These decisions seem on a par with 
filling chemistry laboratories with chemicals th a t are full of impurities, because th a t is 
how they are usually found in most industrial processes.

The suggestion is also made th a t teaching via simplified models, far from making the 
students less effective in handhng real problems, offers the only hope we have of allowing 
inexperienced engineers to  approach real problems in sensible ways. This wiU be discussed 
later in the thesis, but h ttle  scientific support will be given, for Cognitive Science is 
not yet developed sufficiently to  provide firm empirical evidence. This suggestion is a 
praxiological re-statem ent of the principle of curriculum inversion [C0 I186].

4.1 A n  O verview  o f  th e  M od el

The proposed model arose from N aur’s suggestion tha.t we should trea t programming as 
a process of theory building [Nau85], together with Burstall and Goguen’s discussion of 
putting theories together to make specifications [BG77]. We will extend these ideas to 
suggest tha t Software Engineering can be considered to  be based on a process of theory 
(presentation) engineering, where the ta iget theory presentations have certain specific 
properties relating to executability. The idea th a t we consider the artifacts of aU stages 
of design as theories allows us to  admit scientific ideals at all stages, although we must

 ̂We should distinguish between the computer as a vehicle for delivering pedagogical material, like 
television, and the computer as an artifact of study. It is not being suggest that televisions should not be 
used because they are complicated, but that they should not be used to introduce electricity to primary 
school pupils!
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acknowledge tha t, during the construction and communication of these theories, the 
modes of discourse being used may not be scientific, but exploratory or informative.

It is useful to consider the theories involved in the process of software system design 
as being of a num ber of kinds, determined by the primary source of the theory. This 
categorisation is, of course, only approxim ate, and no claim is made th a t it is exhaustive.

P h e n o m en o lo g ic a l th e o r ie s : these arise from the domain of the problem being solved. 
In a stock control system, for example, the laws of supply and demand might be 
considered part of the phenomenological theory, as might the laws underlying the 
company’s policy on buying ahead. A theory tha t is primarily phenomenological 
win serve as a statem ent of requirements for our system design activity.

I n tu i t iv e  th e o r ie s : these are considered as arising from common sense. They are the 
sort of theories discussed in naive physics and folk psychology, and can be seen 
as underpinning the actions of many users and purchasers of software systems, 
although they are likely to  remain unstated.

M a th e m a tic a l  th e o r ie s : these are theories th a t effectively define m athem atical term s, 
such as group theory or set theory. In solving m athem atical problems, these will 
also be phenomenological theories.

C o m p u te r  Science  th e o r ie s : these are the theories governing the behaviour of ar
tifacts studied, or designed, in Computer Science. The theory of programming 
languages, sorting, d a ta  types and logic design might aU be considered to  fall into 
this category. These can be considered definitional or instrum ental on occasions. A 
theory of Pascal, for example, might be used to define the language in a  particular 
context, or to reason about Pascal programs, hence it may sometimes be considered 
m athem atical or phenomenological.

The essence of the model is th a t we take a problem situation and construct a  (primarily) 
phenomenological theory of a system,giving rise to  schemas th a t will solve the problem 
[Put74]. This theory may be presented in terms of other phenomenological, intuitive, 
m athem atical, or Computer Science theories. We then transform  our theory presenta
tion into one having behaviourally equivalent schemas (where this equivalence has to  be 
defined), expressed in terms of the theory presentations of existing computational arti
facts. The argument th a t programs can be considered as theory presentations will not 
be expanded here, but an excellent rehearsal of the argument can be found in Hoare’s 
presentation to  the Royal Society [Hoa85].

The notion of a program as a  theory is also easier to  accept if we adopt D ijkstra’s view 
th a t the subject of interest to computer scientists is computation, not the computer 
[Dij89], for then we can see programs as theories governing particular computations. 
Additional support for the idea can be found in the seminal work of Miller, Galanter and 
Pribram , who write
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“A plan is, for an organism, essentially the same as program for a computer.
. . .w e  regard a com puter’s program  th a t simulates certain features of an 
organism’s behaviour as a  theory about the organism’s plan th a t generated 
the behaviour.” [MGP60, page 17]

Evidence to  suggest th a t expert programmers tend to view programs in term s of plans 
has also been offered by Rist [Ris8 6 j.

This transform ation process may make use of techniques for gradual translation (re
finement), or involve leaps of the imagination. In either case, however, the onus is on 
the designer to  a ttem pt refutation of the theory at aU stages where it is presented in a 
scientific (rather than  informative or exploratory) form. Such refutations may manifest 
themselves as inconsistencies in the theory, or as a failure to  correspond with the facts, 
and it is up to  the designer to decide how to construct a new theory to  cope with the 
problem. In practice, of course, many of the theories used will be treated  as instrum ental, 
and hence refutable only in extreme cases.

This makes software development a  process of self-conscious design. An endorsement of 
this view is expressed by Neumann when he writes “Software Engineering is a state o f  
mind  attainable by thoughtful and farseeing people” [Neu85]. At each stage the designer 
m ust be prepared to  present the current theory in such a form th a t it is amenable to 
refutation. A ttem pts to  escape from the loss of innocence by pretensions to  genius 
are non-scientific, as the genius wiU not contemplate actively seeking out refutations. 
A ttem pts to escape by adoption of classical styles or methods are also non-scientific, in 
Popper’s sense, because they take as axiomatic a  large body of assumptions and protect 
them  from refutation. It should be noted, however, tha t the whole of modern science 
can be deemed a refuge in style: Feyerabend, for example, notes th a t the adoption of a 
western rationalism brings with it a  num ber of hidden assumptions th a t are not open to 
debate within science itself [Fey87]. The theory presentations play the rôle of diagrams in 
Alexander’s philosophy. Our move towards computationally biased theory presentations 
can be re-expressed as the need to move towards constructive diagrams. This means 
th a t we move from being able to  discuss only the function of a  system to being able to 
discuss both its function and its form, and in the case of software this form corresponds 
to the configuration of computational objects.

The model also allows us to  abstract away from certain aspects of the  desired behaviour 
of the system at particular stages of the design. The process of theory construction is 
inherently one of abstraction, and we can decide to delay the introduction of certain facets 
of the design until later stages in the transform ation process. This delaying of detail is 
widely accepted in the pedagogical practices of science teaching, as dem onstrated by 
the adoption of “school science” with its simple, idealised, models, as a precursor to 
“real” science, with its more complex, but still idealised, models. The simplified theory 
presentations are still viewed as presentations of the same theory, however, for we do not 
think of school science as proposing different theories, or of proposing wrong theories. 
This discussion will be put on a firmer footing in the next chapter, when we wiU discuss
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a  suitable refinement of the notion of “theory” .

In our system design task, memory constraints, for example, although known at the out
set, can be ignored in our theory presentations until a suitable opportunity is arrived at 
for the concept to  be presented. Although we we may choose to  ignore some information 
in our current theory presentation, it should be remembered th a t this information po
tentially still influences the transform ations we make. Thus some information starts  off 
at a meta-level governing the design and selection of our theories, but may m igrate down 
into the theory itself as the design proceeds. Some information may never be expressed 
formally in our presentation, but will remain reflected in the choices of presentation we 
make. This close relationship th a t exists between method and theory wiU be developed 
in several ways in the rest of the thesis, and is a recurrent them e at all level of the 
discussion.

Ill this mode of working, the software engineer behaves in many ways like a  pure scientist, 
putting  forward theories with a view to having them refuted. There is, of course, a 
complication: science is always assumed to be founded on honesty. Popper admits tha t 
science, as he views it, is based on the premise th a t no scientist would ever falsify (in 
the fraudulent sense) results, or intentionally express a theory ambiguously so th a t there 
are escapes from refutations. This is a scientific attitude. Central to  Hoare’s approach is 
the notion th a t Software Engineers m ust build such an attitude. Throughout this thesis 
it will be treated as axiomatic th a t such an attitude is both desirable and attainable 
within the profession, but no justification will be given. A ttem pting such a justification 
leads us into the realms of ethics, and questions the very fabric of society^. The reader 
should be aware, however, th a t this assumption is crucial to aU th a t follows, and th a t the 
pedagogical discussions are implicitly founded on the additional assumption th a t students 
accept this code of behaviour or th a t it can be developed in them . AU education has 
such hidden agendas, and teachers a t all levels have implicitly accepted responsibility for 
developing suitable ethical values in their pupils. Unfortunately the producer-consumer 
model of education is sometimes interpreted as an excuse for abandoning the teaching 
of these values in favour of directly applicable skiUs. It would be ironic if this shift were 
to  cause the abandonment of the very values necessary for significant improvements in 
software production.

4.2 T h e Source o f  P h en om en o log ica l T h eories

We need to consider very carefuUy what objects are being discussed by phenomenological 
theories. The lay person’s view of natural science is th a t it is concerned with objects th a t 
can be considered to appear naturaUy in the world. Modern science, however, is very 
hard to explain with such intuitions, and recent philosophies of science have tended to

^This should not be taken as an endorsement of the view that students should not spend time dis
cussing such issues. The author was shocked to discover recently that, on surveying 45 final year Computer 
Science Degree students, 39 of them had never thought there were any question of morality in releasing 
software knowing it to have bugs in it.
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move away from the pre-occupation with observation of the natural world, and attem pted 
to  provide notions of “theory” th a t permit a  separation of theory from nature. Before 
considering this subject further in the next chapter, we wiU discuss how theories might 
arise in Software Design.

One view of Software Engineering, sometimes cited as a reason for not adopting scientific 
practices, is th a t it is concerned not with the natural world, but with man-made infor
m ation structures. There are a number of ways in which these information structures 
may be manifest. They may be embedded in existing systems, either hum an or realised 
by some other artifact, or they may be contained implicitly in some problem th a t we are 
setting out to solve ab initio.

The task of designing a computer-based system to replicate the actions of an existing 
hum an system is quite easy to express in terms of theory building. Here we are reverse- 
engineering a solution to a  problem th a t has already been solved once, in order to re
implement it in a  different technology. Thus we are provided with a model upon which 
to experiment and from which to  generalise a  theory. In the m ajority of cases the 
theory underpinning the original system is not available to us explicitly, however, for 
usually the hum an system has evolved over a period of time, often through a process 
of unselfconscious design, and the implementors have never really needed to  express the 
solution in a rational way. Moreover, the people who implement the existing system 
frequently also act as users of the system, solving difficult problems as they arise. This 
provides a flexible and expert system, bu t unselfconsciously. It also confuses the system 
boundaries. Such an approach usually means th a t the system documentation and the 
designer’s perceptions, do not reflect the system as it actually exists to  solve the problem. 
T hat is, the “designers” have no real theory as to why the system operates as it does. 
Stewart and Stewart illustrate this point with their delightful account of the cuddly 
toy quality inspector, whose description of his job was phrased in terms of rejecting 
the “m ardy bugger” . The inspector was unable to articulate exactly what constituted 
a ‘m ardy bugger” , but after careful analysis using a KeUian repertory grid technique 
[Kel55], it was established th a t to  avoid being so classified a toy had to have the spacing 
between eyes and nose the same as th a t between nose and m outh, and also the pupils of 
the eyes had to be centrally located [SS82], cited in [Jan87, page 485].

The theory of an existing system may be hard to extract, but we should beware of the 
naive assumption tha t because action is taking place there must already be a theory, or 
at least a plan, to extract at all. Suchman suggests that it is only the western desire for 
rationalisation that leads us to  assume action should be underpinned by well thought-out 
plans. She develops the notion of situated actions as governing m ethod, and relegates 
plans to post-rationahsations, or resources to be drawn upon as orientation aids when 
problems arise [Suc87]. Parnas and Clements express a  similar view in the context of 
system design, defending this post-rationalisation as a worthwhile activity [PC85]. At 
this point it is im portant to understand the status of the theory our engineer is trying 
to construct. We are not suggesting th a t this phenomenological theory is governing 
the actions of people in the existing hum an system, and the task is one of discovery.
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R ather we are asserting th a t we need to  construct a rationalisation as the basis of a 
plan governing the actions of a machine. Current technology requires such a plan, for 
computer systems are still programmed, and are not capable of situated actions to  the 
same extent as humans. It might be suggested th a t this is not because of a  lim itation 
of processing power, but of interface: the machine does not have access to  the same 
wealth of detail about each situation th a t is available to the hum an problem solver. 
Furthermore, we are not endorsing the cognitive science view th a t hum an action may be 
studied by building computable theories assumed to lie beneath actions, rather we are 
asserting th a t one way to  simulate these actions is to construct a  computable theory. 
Thus our theory building is genuinely a process of design and not discovery.

This also raises the question as to  whether our theory, once designed, should be exported 
to the application domain through the user interface. Suchman makes the pertinent 
observation th a t once designed, computer-based systems could actually instruct the users 
in the theory underpinning their design [Suc87, page 17]. This concords with the idea 
th a t software engineering and education have many similarities, for once educated we 
expect our pupils to  be able to instruct others. We wiU not pursue this question further 
in this thesis, bu t it should be noted how naturally questions like this arise in the context 
of the proposed model.

On occasion, the method th a t the hum an is using for solving a problem may be difficult 
to devise by discussion with the individual alone. Flying helicopters, for example, is 
an activity where many of the pilot’s actions are carried out by “feel” , in reaction to 
the behaviour of the machine. Autopilot design to date has not attem pted to exploit 
this “feel” , but has sought decisions based upon the theory of flight, the current mission 
environment, and various measurable param eters. Recent research suggests th a t an 
alternative strategy might be to a ttem pt simulation of hum an action by treating the 
pilots as empirical objects, and devising a theory th a t explains their actions in term s of 
the sense da ta  available to  them. This can be achieved by a process of rule induction. 
This theory can then be transformed, typically by a process of “cleaning up” , where the 
superior speed of a computer is exploited to  make the same decisions, bu t faster. Evidence 
suggests th a t this technique can keep the controlled device within tighter operating 
envelopes [Mic90j.

Designing a computer-based solution to  a  problem currently solved by another artifact, 
rather than a person, such as designing a microprocessor system to replace the mechan
ical control unit in a washing machine, is usually a rather simpler task. Here the reverse 
engineering is more traditional, and in addition we may be allowed access to the specifi
cation of the original unit. The usefulness of this specification will largely be determined 
by the extent to which it captures the theory of the artifact in isolation from the theory 
of the technology in which the artifact is currently implemented. If the specification 
is expressed solely in terms of drawings of cogs and motors, for example, it may be of 
little value for this purpose: if it is expressed in more abstract concepts it is likely to be 
of more immediate use. In effect, we do not want a constructive diagram  but a purely 
functional one.
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In both  of the above cases we have an existing object th a t can be empirically observed. 
Frequently, however, we are called upon to  solve problems th a t have hitherto been left 
unsolved. In this case we have no system to  observe empirically. Loosely we can imagine 
th a t we are trying to construct a  theory of “what the customer w ants” . In order to  discuss 
this we need to have a model of the design process th a t admits theories of artifacts to 
be constructed as weU as of those th a t already exist. We will do this by adopting a 
strategy suggested by Simon in his work on the Sciences of the Artificial [Sim69] and 
also Alexander in his work on architecture [Ale64]. Both authors suggest th a t we can 
view an artifact in two ways: as an object or as an interface. If we have access to 
the “hole” into which the system is to  fit, then we can experiment empirically with the 
interface surrounding this hole.

This is also the kernel of the slogan th a t we should sta rt off by specifying the “w hat” not 
the “how”. This slogan is not very helpful, however, unless we are prepared to  discuss 
our interpretation of the “whatness” and “howness” of a system. We will interpret the 
slogan as meaning th a t we should seek to  express what we want the system to be in terms 
of function observed across some interface before expressing what we want the system 
to  be in terms of its form. This does raise the question as to how easily function can be 
expressed without implications for form: a question tha t we will return  to in the next 
chapter.

Typical of the confusion th a t this slogan causes is the problem faced by a designer who is 
told at the outset th a t a particular programming language must be used. This may occur, 
for example, where a new program is to be added to  an existing suite, and the customer 
wants to use existing staff to m aintain the new program without any additional staff 
development. This requirement to  use a particular language is then part of the what, not 
the how, because it is visible, to maintenance staff, across the interface. If the customers 
make no such stipulation then they have no right to delve into the system to observe 
the language after it has been constructed, and object to the designer’s choice. The 
point to note here is th a t if an implementation language or target machine is specified, 
implicitly or explicitly, by the customer then it will influence the design in the same way 
as the more conventional functional attributes. The designer may, of course, choose to 
delay inclusion of such details in the theory until a later stage in the design process, 
thus allowing this influence to  be shown by theory presentation selection, rather than 
within the presentation itself. The slogan, in this case, carries an implied methodological 
message regarding the ordering of functional attributes. As we shall see, however, this 
message is inconsistent.

We can view this process of understanding the hole in at least four ways. First we could 
consider th a t the customers and users are the true objects of our empirical study, and 
th a t we are trying to  construct a  theory of their beliefs about the object th a t will fill the 
hole. In general, however, no single individual wiU suffice for this study, and so we must 
study a network of interacting individuals. Each individual will have a different set of 
beliefs. There is no problem with beliefs being logically inconsistent provided they are 
kept within different systems, but before the engineer can form a unified theory, within a
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system simple enough to  compute with on current technology, these inconsistencies will 
have to be resolved. This can be achieved either by genuinely persuading individuals 
to change there beliefs, or by persuading them to act against their beliefs. In practice, 
m any of the inconsistencies observed are the result of the interpretation of term s, rather 
than inconsistent views of the world.

Traditional views of Science cannot easily cope with such objects of study. It is usually 
assumed th a t experiments are repeatable, for example, but if we are dealing with belief 
systems we must accept th a t such repetition cannot be relied upon, for there is no 
obligation for beliefs to remain constant in a  changing world. It is also assumed th a t 
the scientist attem pts to  minimise interference with the world being observed. Resolving 
inconsistencies in the natural world by “persuading” objects to  behave differently has a 
distinctly unscientific feel! Psychologists are well aware of the problems this assumption 
of non-interference brings, but where the engineer has the additional motive of wanting to 
seek consistency, this non-interference is itself paradoxical. This view is now considered 
rather naive, and it is generally accepted th a t at the very least “needs analysis” should 
replace “wants analysis”  ̂ in the hope th a t needs wiU be less inconsistent than  wants.

The second way of viewing the process allows us to  consider an object of study th a t does 
not change, and is hence more amenable to scientific approaches. We can consider the 
users and customer as instrum ents for observation of an unchanging hole. Inconsisten
cies and changes over time can now be seen as calibration problems. We can attem pt to 
calibrate these instrum ents by bringing them  into contact with concrete examples, in tro
ducing common terminology and expecting common answers. This is the approach used 
for m any years at the Royal Observatory in Greenwich, where observers were all tested, 
giving rise to the “personal equations” th a t were used to counter individual differences 
when using the telescope [Gre84, pages 210-216]. These equations were based on statisti
cal techniques, which could a ttem pt to correct for relative, but not absolute, error. The 
assumption was made in this approach tha t perception mechanisms are fairly simplistic, 
and hence simple statistics would serve to  compensate for differences. We m ust accept, 
however, tha t observation is theory laden and seek to reconcile the conflicting theories 
th a t give rise to the inconsistencies. This would appear to lead to  a  circular problem, 
unless we are prepared to  break the circle by the dictatorial imposition of existing theo
ries for the observation. Such an approach was common in the early days of information 
system design, and led, not surprisingly, to considerable user resistance. Moreover, the 
imposition of a theory usually leads to  the wrong problem being solved, as the engineer 
forces an inappropriate perception of the problem on the user.

The third way of viewing the problems is to consider the artifact and its environment as 
forming the desired system. In practice, this is usually done for software systems, where

^Again we might note the irony of the situation when asked to educate engineers within a system 
that is being forced to deliver “what the consumer wants”. The inconsistencies that such wants analysis 
present (such as the conflicting wants of students, parents, employees and government) are surely reflected 
in the number of ad hoc solutions, and subsequent problems, of the education system. We might further 
reflect that if such an education leads graduates to accept the values inherent in the system, then the 
system might be acting against the education of engineers fitted to solve the software crisis.
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functionality is expressed in terms of the running program, even if the target machine 
is not part of the designed artifact. This is simply explained in our model, for we use 
theories of program execution in our presentation, importing as instrum ents theories 
of the execution environment. The approach is also quite common in control systems, 
where the specification is w ritten in term s of how the controlled plant is to behave, not 
how the control program is to  behave. We could extend this idea, however, and include, 
say, users as part of the system. We m ight, therefore, take our system boundary as the 
functioning of a departm ent within a corporate structure. In this case, our design task 
can be seen as the solving of an interface equation [Shi8 6 ]:

5 = (^ | .Y) \J

where S  is the to ta l system, E  is the environment, I  is the set of internal communications, 
and X  is the part of the system we are to design. This view might be plausible for a 
control system, but if E  involves a  substantial human element it is unlikely th a t its 
behaviour will remain constant with the introduction of X  into its environment. The 
only way this view would work is if we could dictate the hum an behaviour. Current 
thinking in HOI is coming around to  the view th a t this is not only undesirable, but 
impossible. Even if we do accept this view for a particular problem, of course, we stiU 
have to find a way of constructing a theory of S.

The final way we will consider of viewing the problem, which we shall adopt in what 
follows, is th a t the customers and users should be allowed to become part of the design 
team , who bring with them  existing theories th a t they use for interpreting observations. 
The task of the Software Engineer is to  coordinate the team  on a research programme 
of unification, generalisation and refinement. This allows us to  weaken the maxim “the 
customer is always right” by using Popper’s assertion th a t anyone who holds theories 
may well be wrong, customers included. It is the duty of the software engineer formulate 
the theory in such a  way th a t refutation is possible, to manage the refutation/ revision 
cycle, and to move the theory presentation towards an implement able form. In a sense, 
the software engineer is playing the rôle of teacher here, helping the customer to  un
derstand the system. This idea that users and customers should become more involved 
in the design process is currently being advocated by the proponents of a num ber of 
new development “methodologies” . One side-effect of this is to  emphasise th a t system 
design is not usually technologically neutral: by being forced to question their existing 
theories, many users and managers have discovered inconsistencies in existing company 
procedures, structures and policies. This again raises the question of honesty, for the 
approach can only really work if everyone involved accepts scientific standards: a  junior 
member of staff who is not prepared to  refute the theory of a director, for example, or 
a director who refuses to  listen to  any refutations of a  subordinate, is not conforming to 
these standards^. The management structure and ethos in many companies is likely to

^We should not assume, however, that scientists automatically conform to these standards either. 
The history of science offers many examples of junior researchers having their ideas ignored by those in 
charge of their research programmes.
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cause this approach to flounder.

Wliichever way we choose to  view the process, we can see there are problems. It is not 
enough for the software engineer to  want to  behave scientifically. If we adopt view one, 
there is not yet sufficient understanding of the ways in which beliefs change for tliis to 
be done. If we adopt view two, then we m ust accept tha t we are working with unreliable 
instrum ents. View three presents us with both of these problems, and also the task of 
solving the interface equation. If we adopt view four, then we m ust accept th a t it is 
not enough for the software engineer to  want to  behave scientifically, but there m ust 
be a corresponding willingness on the part of the customers and users. This raises the 
question of the customers’ and users’ perceptions of the software engineering process. 
Unfortunately, these are likely to  be formed on the basis of experiences and stories, often 
apocryphal, of computing disasters. It is hard to  persuade people th a t the process is 
scientific, with the high ideals this entails, when they have perceptions th a t include the 
engineer as a  dictator, or as a  high priest, or as a back-street trader. User expectations, 
therefore, m ust be seen as a  contributing factor to the software crisis. A ttribution of 
blame is an unconstructive enterprise, but if this interpretation of alfairs is correct, then 
the crisis can clearly only be resolved over a  number of years as expectations change. 
Hoare’s implication th a t software engineers can change their status from high priests to 
scientists by their own actions is perhaps a little naive. If the masses still want high 
priests, or continue to  see high priests, then they can make such a transition very hard. 
N aur’s view th a t the status must be both deserved and conferred seems more tenable. 
This observation is a reflection of K an t’s point th a t art requires observers sufficiently 
cultured to  appreciate it as such [K anll]: software systems require users and clients who 
are able to perceive them  as engineered artifacts.

4.3 T h e R efu ta tio n  o f P h en om en o log ica l T h eories

W hat does it mean to refute or accept a phenomenological theory? According to Popper, 
we accept a theory “only in the sense th a t we select it as worthy to  be subjected to  further 
criticism, and to the severest tests we can design” ; any theory th a t survives, however, “is 
the best theory .. .of which we know” [Pop59, page 419]. A m ajor criticism of Popper 
has been his inability, or reluctance, to explain what he means by “best” in this context. 
On the surface, he cannot mean “most likely to  be true” , for bolder, less probable, 
theories are considered better than  probable ones. In fact, however, Popper’s philosophy 
is concerned with the construction of theories, not their use.

When we consider the construction oi theories, there is a clear distinction between Popper 
and the inductivists. This distinction seems to  disappear when we consider the selection 
of theoi'ies for some use outside of science. Popper does not concern himself directly 
with such uses of theories, seeing the theory as an end in itself. If we push the point, 
however, and insist th a t theories must be capable of application to  problems outside 
of science, then Popper is recommending the selection of the theory th a t evidence to
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date has failed to  refute, in spite of real attem pts. The inductivist is recommending the 
theory the evidence supports. The difference at the level of selection would appear to 
be one of terminology. We would argue, however, th a t there is still a  m ajor difference in 
attitude. The inductivist amasses data , then seeks to h t a  theory. The pure refutationist 
conjectures a theory to  explain some minimal set of phenomena, then seeks evidence th a t 
will refute it, probably hoping (if hope is allowable to  a scientist) th a t the refutation will 
fail.

These two approaches to  theory construction can be considered as giving rise to  alter
native strategies for “requirements analysis” . Inductivism gives rise to  the notion th a t 
requirements analysis starts  by the process of requirements capture, where d a ta  is col
lected, then moves to forge this da ta  in to  a  generalised theory upon which the design is 
based. TMs process may still be driven by theory, for the choice of what da ta  to  collect, 
unless truly random , may be determined, or rationalised, by some plan or theory held 
by the scientist. Refutationism, however, leads to the view th a t certain facts will be 
made available as received knowledge in the problem situation, but then a theory will be 
constructed. Additional information wiU then be sought out in attem pts to refute the 
theory, thus the theory construction drives the requirements capture rather than follow
ing on from it. It should be stressed here th a t we are not suggesting the theory will be 
constructed in all its glory before the refutation is sought. The early stages of theory 
construction will be exploratory discourse, and it is likely th a t during this stage many 
possible sources of refutation wiU be identified, additional information wiU be sought, 
and if a refutation seems likely the theory will be modified. Thus the documented result 
of both  the inductivist and refutationalist approaches are likely to  converge to scientific 
discourse expressed in inductivist terms.

One objection to the adoption of a refutationist strategy is th a t the process wiU never 
stop. The engineer will keep attem pting refutations, thus improving understanding of 
the required system, but never actuaUy building it. It is a t this stage th a t the the maxim 
“the customer is always right” can safely be invoked, but at the meta-scientific level. The 
customer is not right in the sense th a t his or her views are true, but in th a t he or she has 
the right to  caU a halt to  the process of theory construction. The customer is paying not 
for tru th  but for time and expertise. Therefore at any stage the engineer can be told to 
stop the refutation process and to  proceed with the transform ation phase; in essence, to 
stop being a scientist, building theories, and to become an engineer using them. Another 
objection may be that in most system design activities a purely refutationaUst strategy 
is not an option, for the theory may drift wildly away from the task in hand. In Chapter 
Six we will suggest th a t adopting Lakatos’s “research programmes” [Lak70] provides a 
way to reconcile refutation with progress towards a loosely defined goal.

Once the exploratory phase of theory construction has been carried out, a clear contrac
tual boundary must be drawn between the customer and the engineer [Coh82]. Systems 
th a t fail to conform to  the theory as established at this cut-off point are not acceptable, 
but if the customer suddenly realises th a t the theory as agreed is inadequate, th a t is 
not the engineer’s failing. A professional engineer, of course, has the responsibility to
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offer good advice to  the customer as to  when a suitable stage has been reached for the 
accepting of a theory. W hen a theory becomes too complex for the customer to  follow 
in an abstract form, certain schemas of the theory may be transform ed for use within 
an idealised world as prototypes. These give the customer a chance to  refute the theory 
by direct experience rather than  by having to  imagine the system. They also serve as 
partial existence proofs for aspects of the system, albeit in an idealised world.

There are certain extreme forms th a t can be observed in this aspect of the model. The 
customer might, for example, present the engineer with a  list of observation statem ents, 
and not wish to engage in any further theoretical discussions. In this case any theory 
th a t is not refuted by the given statem ents will suffice. Such an approach is sensible 
only for trivial systems, and even then usually requires the engineer to  use considerable 
common sense and also some domain specific knowledge if the custom er’s needs are to  be 
satisfied. Alternatively, the customer may view the design process as eternal, but ask the 
engineer to perform implementations based on partially presented theories on the way 
through. Large operating systems are often designed in this way, where many versions 
of the system are released, even though the engineer already knows th a t the theory they 
are based on has been refuted, and acknowledges the fact by a list of known bugs and 
“features” . The customer, like the engineer, has to weigh up many factors in deciding 
when to accept a theory, and this decision is in no way a part of the theory. Such an 
approach is certainly necessary for the solution of E-Problems.

Note th a t not all predictions arising from a theory are sufficient to  refuteit. Popperian 
refutation requires a basic sentence to be derived, th a t is, one th a t expresses an observable 
fact. Theories, however, in general comprise generalisations. The conventional way 
ill which to view the derivation of basic statem ents from theories is to assume some 
world, expressed in term s of auxiliary statem ents, and apply the theory to  this world, 
thus producing specifics from generalities. The predictions, therefore, are based upon a 
conjunction of the theory with the auxiliary statem ents. A problem of terminology arises 
here, for scientists usually use the term  “theory” to denote this conjunction, rather than 
the philosophers’ pure theory. This allows the scientist to produce laws which it is claimed 
will be true within this idealised world, and claim them as products of the theory.

These auxiliary statem ents are crucial in determining the system boundary, for they 
determine the relevant aspects of the world in which the system is to operate. A system 
being designed to  handle personnel information, for example, might be based on an 
auxiliary statem ent th a t all employees have at most two initials. The engineer and 
customer may both know this to  be false, having met an employee called Cuthbert 
Jacob Earnest Bottlethwaite. Acceptance of the auxiliary statem ent wiU allow laws to 
be derived, but at the expense of generality. If Cuthbert is to be handled by this system, 
a way needs to be found of removing one of his initials (thus making him conform 
to the system) or a  patch must be provided to the system (thus rescuing the theory 
by ad hoc means). Acceptance of auxiliary statem ents forms part of the contractual 
boundary, and many examples of system maintenance arise as examples of changes to 
the auxiliary statem ents. It should be noted th a t auxiliary statem ents are accepted in the
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full knowledge th a t they are not universally true. They are instrum ental, and refutation 
of the theory is only attem pted in worlds in which the auxiliary statem ents hold.

There is no clear distinction between auxiliary statem ents and those contained in the the
ory. At one extreme, aU auxiliary statem ents could be absorbed into the theory proper, 
in which case those th a t are not true will lead to  immediate refutation. At the other 
extreme, a  theory could be reduced to  the rules of some logic, and aU other statem ents 
could be treated  as auxiliary, in which case refutation is not possible. The transition 
from software design as science to  software design as engineering can be considered as 
the change in status of statem ents from theoretical to  auxiliary, th a t is, from statem ents 
th a t rationalise the world to statem ents th a t define the world of application agreed in the 
contractual boundary. Moreover, the status of these auxiliary statem ents cannot change 
in the subsequent transform ations th a t take place except with the custom er’s agreement: 
refutations found in system testing should not lead to  changes in the specification, only 
the program. This aspect of Popper’s exposition does not fit well with the task in hand, 
and is one of the reasons for moving on to consider a more refined notion of “theory” in 
the next chapter.

This view of the design process allows us to place a different in terpretation on the phrase 
“all right in theory, but in practice . . . ’’. If we accept this statem ent at face value we 
are allowing comparison of theory and practice, thus adm itting them  as similar enough 
to be compared: an approach which Ryle denies, claiming it is a  categorical error to 
carry out such a comparison [Ryl49]. To avoid this problem we wiU in terpret “in theory” 
and “in practice” as shorthand ways of describing domains of application: thus claiming 
something is aU right in theory, but not in practice is a way of saying th a t the auxiliary 
statem ents adopted by the théoriser do not hold in the world being worked in by the 
practitioner.

4.4  Schem as

Theories are usually linked with the notion of explanation. The model of explanation 
th a t we will adopt is th a t described by Hemp el as the Deductive-Nomologicai model (the 
D-N model) [Hem65]. Ryan describes the rules of this model as follows:

“a successful explanation has to  obey three requirements. The first is the 
formal requirement that the statem ents laying down the laws and initial con
ditions should entail the statem ent laying down the conclusion; the second 
is the m aterial requirement th a t the premises should be true—or more cau
tiously tha t they should be well corroborated; the last is a  consequence of 
these requirements, th a t the explicansshould be empirically testable, by being 
open to  refutation should it predict what is not the case.” [Rya84, pages 52- 
53]
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This association of theories with explanation has led to  one of the criticisms of the theory 
building view of programs, namely th a t the principal purpose of programs is to  compute 
values and not to  provide explanations [J0 I188]. This criticism arises naturally out of 
adoption of Popper’s philosophy, for explanation in a holistic sense is the only purpose 
proposed for a theory in this philosophy, hence the reason for refutation of the whole the
ory if any prediction does not accord with the facts. Kuhn has pointed out, however, th a t 
holistic explanation is only the principal purpose of theory in the (unusual) revolutionary 
phase of science, and th a t Popper “has characterised the entire scientific enterprise in 
term s th a t apply only to  its occasional revolutionary parts” [KuhTOa, page 6 ]. Kuhn 
maintains th a t scientific theories in normal science are used for solving “puzzles” , such 
as predicting results given some initial conditions, or determining initial conditions to 
explain some observed result. An im portant point to  note here is th a t “refutation” dur
ing this normal science is unlikely to  result in rejection of the theory, rather they will be 
a ttribu ted  to errors on the part of the scientist which will, hopefully, lead to learning by 
the scientist. Only when cumulative effects of “refutation” are noted by a community at 
large will the theory be rejected, and corporate learning take place.

The use of theories in puzzle solving leads us to conclude th a t theories are not, as 
Johnson suggests, used only to  provide propositions, but also to  yield values in the form 
of calculations of initial conditions and consequences. It can always be argued, of course, 
th a t such values can be expressed implicitly within propositions, such as “the required 
values of the initial condition is .r” , but then Johnson’s objection to  programming as 
theory building also dissolves, for we can simply embed every program  within a suitable 
propositional form. Moreover, even if we accept Johnson’s point th a t programs are not 
theories, this does not deny th a t programming can be seen as a process of theory building, 
for we can escape by observing th a t programs are not the only products of programming. 
This is the point th a t Naur makes so forcefully.

These different ways of using theories have been termed “schemas” by Putnam , who 
identified three principal forms [Put74]. We can illustrate these schemas by appealing 
to Pythagoras’s theorem, as part of the empirical theory of triangular objects (which is 
how Pythagoras first conceived it, before the theory became instrum ental). We will call 
the first of these the refutational schema. It allows us to  make a prediction based on a 
held theory and a set of auxiliary statem ents.

Theory , auxiliary Statements 
Prediction

As a result of applying this schema, it is the theory th a t may change. If we observe, for 
example, th a t a triangle with sides 6,7 and 8  form a right-angled triangle, then we can 
predict th a t 6  ̂ +  7  ̂ =  8 ^, which it doesn’t, of course. Consequently we need to  refute 
the theory (in this example it is more likely we would rescue the theory by investigating 
the world in which this triangle exists, and impose auxiliary statem ents to  exclude it).
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The second schema, which we will call the explanatory schema, allows us to  establish 
what initial conditions m ust have held for some fact to be explained by a theory.

Theory , ????
Fact to be explained

In this case, the fact cannot be false, and the theory wiU not be immediately refuted if 
the fact cannot be explained. If we observe, therefore, tha t 3^ +  4^ =  5^ we can explain 
this by stating th a t there must be in our auxihary statem ents something to  admit a 
triangle with sides 3, 4 and 5 as right-angled. There may, of course, be many possible 
explanations of any given fact. The existence of multiple explanations may give rise to 
the  quest for a generalisation of the theory to provide linlts between the explanations.

The final schema Putnam  considers allows us to compute values given a theory and 
auxiliary statem ents, and is effectively expressing the relationship between laws and 
rules th a t we considered earlier. We wiU call this the computational schema.

Theory , auxiliary statements _ _

This schema gives rise to  many possible computations, of course: we should not confuse 
the schemas with their particular use. We might, for example, use Pythagoras’s theorem 
to compute one side of a right-angled triangle given the other two sides. This is a  purely 
instrum ental use of the theory. We should note here th a t if we embody a theory of 
propositions, for example, in our theory then our calculations may look like predictions 
(for example, we might compute the proposition x =  y). It is im portant to recognise the 
distinction between the use of logic to express theories, and the theory of logic itself.

This computational schema gives rise to specific formulae. D ijkstra notes th a t viewing 
programs as formulae has many corollaries:

“First, it puts the program m er’s task in the proper perspective: he has to 
devise th a t formula. Second, it explains why the world of m athem atics all 
but ignored the programming challenge: programs were so much longer than  
formulae it was used to th a t it did not even recognise them  as such. Now, 
back to to the program m er’s job. He has to derive th a t formula; he has to 
derive th a t program. We know of only one reliable way of doing th a t, viz by 
means of symbol manipulation. And now the circle is closed. We construct 
our m athem atical symbol m anipulations by means of symbol m anipulations.” 
[Dij89, page 1401]

Dijkstra fails to observe, however, th a t a  formal system m ust be found within which the 
circle can be circumnavigated. This, we would argue, is the formalisation of the theory 
we are building.

There are two distinct observations th a t we can make at this point. The first is th a t 
computers can be used to implement all three possible schemas. The computerised explo
ration of the four-colour problem, for example, was an attem pt at refutation. Diagnostic
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systems sometimes attem pt an implementation of an explanatory schema (although more 
commonly, a theory of failure will be constructed). Both of these schemas, however, fre
quently involve highly complex search strategies, and so are more commonly found under 
the heading of Artificial Intelligence rather than  Software Engineering. The computa
tional schema is stiU the most commonly implemented one at present, and hence we will 
concentrate on it here.

The second observation is th a t the software engineer will use all three types of schema 
during the course of software design. Refutational schemas wiU be used in forming the 
theory of the system under consideration. Explanatory schemas will be used particularly 
during exploratory discourse, where tentative theories are held, and the engineer is a t
tem pting to see if the theory, together with the given auxiliary statem ents, is sufficient 
to explain the required phenomena. The computational form wiU be used with existing 
theories of third world objects such as programming languages and da ta  structures in 
circumnavigating D ijkstra’s circle.

Causey has criticised the introduction of schemas on the ground th a t once you start 
to analyse them carefully you rapidly discover the need for more and more schemas to 
explain the actual behaviour of scientists [Cau77, page 456]. We shall take this criticism 
as a warning, and use our schemas only as rationalisations for the plans governing the 
behaviour of machines.

4.5 P ro o f O b ligation s

There are certain properties th a t we require of both  our theory presentations, and also the 
transitions th a t can take place between pairs of presentations. These are not independent, 
for it is the need to preserve properties th a t gives rise to the transitional requirements. 
It is a  consequence of adopting selfconscious design th a t the engineer m ust identify 
the proof obligations inherent any any approach adopted, be aware of possible ways 
in which these obligations might be discharged, and select the most appropriate way 
for carrying this out. Refuge in style is particularly dangerous here, for by adopting a 
pre-defined method the engineer often relinquishes control over these proof obligations, 
usually without realising it. The responsibility for discharging the obligation, however, 
must still rest w ith the engineer, and the fact th a t a chosen tool makes identification and 
discharge of obligations difficult is no excuse, for the m ethod was selected. If the m ethod 
is imposed, by customer or higher engineering authority, then the engineer is provided 
with a  refuge from the loss of innocence.

A system atic identification of proof obligations, both those inherent in the process of 
theory building, and those consequential on the choice of presentation techniques, has 
not yet taken place in Software Engineering. Cohen and P itt have started  this process, 
and have suggested a number of obligations tha t can be identified, and ways in which 
discharge can be achieved [CP90b][CF90c][CF90a|. Only general properties will be dis
cussed here: those properties relating to  specific styles of specification or implementation
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will be discussed in the next chapter.

O bligations for a Single T heory Presentation

The refutation of a phenomenological theory is an indication th a t it is not fit for purpose. 
This notion of fitness for purpose is common in engineering, and captures the idea of a 
system solving an identified problem. Application of this idea to Software Engineering 
has been discussed in more detail elsewhere [Loo91]. In our model, however, there are in 
general two or more theory presentations th a t need to be considered. The phenomeno
logical theory presentation will, presumably, have been deemed fit for purpose by the 
customer authority (by failure to  refute), and wiU thus form a contractual boundary. 
The theory presentation embodied in the  delivered system m ust also be fit for purpose: 
indeed, this is the only one th a t really concerns the user. Clearly, one way this could be 
done is to attem pt refutation of the delivered presentation. Since we have an agreed con
trac tual boundary, we do not need to  involve the customer in this, we can simply subject 
the final version to the same body of tests th a t failed to refute the phenomenological 
theory. The customer, however, may also insist on acceptance tests before agreeing tha t 
the contract has been met. Logically, this approach is perfectly acceptable. Testing is 
often belittled, but this must be done on methodological grounds, not logical. Indeed, 
one of the arguments often proposed against testing is th a t it cannot show the absence 
of bugs. This is true, but only testing can show fitness for purpose, for deductive proof 
cannot show the correctness of theories! The key is, of course, to  allow the testing of 
the phenomenological theory th a t has already been carried out to  percolate through the 
process, so th a t we do not need to  retest a t every stage of the design process.

One of the methodological arguments against testing during the later stages of design is 
th a t the theory presentations, once embodied in code, become difficult to reason about. 
This means th a t it is very hard to  find the severe tests deductively, and often testing 
becomes more of a stochastic process. Moreover, once we have implemented only specific 
schemas, we usually lose the ability to refute general cases by finding counter examples 
logically: rather we end up attem pting to  prove them  exhaustively, or more probably, 
assuming a principle of induction. Tools may offer support to this activity, by “studying” 
the code and inferring sensible tests, but ultimately we are still looking for needles in 
haystacks.

The real methodological problem with testing at this stage, however, is th a t we are 
trying to solve the wrong problem. If we do succeed in refutation then either our initial 
phenomenological theory has also been refuted (in which case the contract has to  be 
changed or, more likely, reinterpreted) or the embodied presentation is not a  presentation 
of the phenomenological theory.
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C orrectness and R efinem ent betw een  Presentations

Hoare and Gries tackle this problem by suggesting th a t we attem pt to  ensure th a t our de
livered system embodies the same theory as tha t already agreed in the contract. They are 
suggesting th a t we use computing theories instrumentaUy, to  to  prove a correspondence 
between two theory presentations. They are proposing a m eta-theoretical approach. In 
particular, they are proposing a mathematico-scientihc approach, where we take a formal 
theory presentation in which we deduce appropriate theorems about our specifications 
and programs (we will adopt these term s to  avoid confusion between the levels of theory 
present here).

This approach, however, requires three conditions to be m et. F irst, we m ust have a 
formal presentation of the specification. Second, we require a  formal presentation of the 
implementation. These two conditions amount to  the observation th a t we m ust be able 
to formalise our domain of interest (in this case a pair of theory presentations) before 
we can reason formally about it; this will be considered further in the next section. 
Third, we need a logic, and associated heuristics, for deducing at least the correctness 
property th a t if our specification has not been refuted by a set of experiments then our 
implementation will not be refuted by the same set. In fact, this condition is not as 
obvious as it sounds, for it means th a t the system may be a presentation of a  more 
powerful theory than  th a t inherent in our specification. We are insisting th a t given a 
specification theory Tg and an implementation theory T» then Ti Tg rather than 
Ti = Tg, For a more detailed account of the decision to accept implication rather than 
equivalence, see [Hoa85]. A specification may require some properties for just positive 
integers, whereas the implementation can provide schemas th a t work for aU integers. If a  
customer is selling this product on, and intends releasing a more expensive version th a t 
works for all integers, then clearly the delivered system wiU not be fit for purpose, as it 
will not accord with marketing strategy, although it may be “correct” . In this case, we 
have failed to  specify the system tightly enough: it is part of the defined behaviour of the 
system th a t it should not respond to  negative integers, or rather, should respond with a 
null response! Similar arguments can be put forward concerning error handfing: errors 
clearly cannot be unforeseen events (otherwise we could not program  in ways to handle 
them ), therefore they must be foreseen. If they are foreseen, why are they different to any 
other event th a t may occur? We are importing part of the phenomenological vocabulary 
into the theory. Errors are just a particular class of inputs th a t need to be handled: their 
status as errors is irrelevant a t best, but quite likely misleading.

Correctness is a  safety property, but there are also liveness considerations th a t need 
to be met. Every relevant schema in the specification must also be computable within 
the implementation. An experiment th a t is inconclusive in the implem entation, but 
conclusive in the specification reduces the liveness of the implementation. The classic 
example of this is non-termination: procedures in programs th a t fail to term inate will 
never refute the theory, but will render the artifact unfit for purpose if the specification 
relies on such a schema embodied in the procedure. This amounts to the statem ent th a t
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our theories must be sufRciently scientific, in the Popperian sense.

Clearly we require some additional properties of our meta-theory, such as its soundness, 
relative to some intended class of interpretations. We would also like completeness. In 
practice, however, we can only ask for completeness if certain expressibility constraints 
are met by the language, and also if we allow oracles from the specification and imple
m entation domains to  provide tautologies for use in derivations.

There are several general strategies th a t can be adopted in solving this problem of proving 
correspondence. Two im portant classes can loosely be called generation techniques and 
verification techniques.

In a  generation technique, we seek to  generate an implementation from a specification. 
We might, for example, seek to  transform  our specification into an equivalent presen
tation: effectively this is using a computational schema in our m eta-theory to compute 
a new presentation given an existing one. Rather than attem pt a  strict equivalence, 
however, it is common to  seek a  refinement [MorQO] (or reification[Joii8 6 ]), for this is 
sufficient to meet our condition concerning refutation. In addition to  transforming it 
is also common to add ex tra information to  the new presentation in some form or an
other. Obviously this ex tra information in the implementation cannot be shown to arise 
from the specification, in which it was absent, so we should expect to  have to  test these 
properties with a view to refutation, unless we can prove non-interference with the phe
nomenological theory.

A rather particular instance of this generative process is provided by the use of construc
tive logic to generate the implementation as part of an existence proof associated with 
the specification. The exemplar of this is the use of M artin-Lof type theory[ML82].

Verification techniques use a computational schema in our m eta-theory, but this time one 
th a t accepts two presentations and produces the proof of a theorem which we can inter
pret as a statem ent of correctness, either using equivalence or refinement. This approach 
is often criticised, as the task of producing the proof is usually lengthy and complex. 
This observation is based on a misunderstanding of the scientific process, however, for 
the proof will actually be generated by an exploratory process during the course of pro
gram construction, and not generated after the event. It is the scientific reformulation of 
the proof th a t may appear complex and lengthy, when viewed holisticaUy, but it can be 
argued th a t the steps involved are no more complex than the task of writing the program. 
If we want a rationalisation of correctness made public, and if we want it to conform 
to standard scientific ideals, then we m ust accept the consequences. The viewing of the 
process as an extension of exploratory discourse also allows us to  see th a t the proof can 
help us to write the program , for we can explore ahead, see what interm ediate results 
are required for the proof to succeed, and engineer our theory presentation accordingly.

The adoption of the mathematico-scientific approach, with its instrum ental use of the
ories, amounts to reducing claims about specifications and implementations to  claims 
about the domains in which they are to  operate. We deduce th a t the program  is correct 
with respect to  a specification by assuming properties of the environments in which they
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are to be interpreted. Some of these claims will be restricted to  im plem entation details, 
such as the assumption th a t a  programming language will be implemented to  conform to 
its Hoare logic. Others wiU be claims th a t m ust hold about both the implementation and 
specification domains (such as properties of natural numbers). It might be argued th a t 
such claims should have been identified in the contractual boundary for the specification 
domain, and so can be taken instrumentaUy, but in practice the  proof is likely to  throw 
up lemmas th a t have been taken implicitly. Many of these lemmas wiU form part of 
common sense theories, but it is suggested th a t the engineer ensures th a t this sense is 
indeed common on both sides of the contractual boundary. An example of such a case^ 
is the lemma th a t if m  buildings contain between them  n rooms then m < n. This is 
not always the case, for a building th a t is extended may have just one room after the 
extension, but the extension itself m ay be considered as a  separate building. Thus two 
buildings may contain just one room. In the course of a design activity, one software 
engineering consultant discovered th a t a particular company used three different notions 
of the term  “building” in its accounting procedures. Individuals in the company could 
variously consider a single structure to  comprise any number of “buildings” . W ithout 
this analysis, we are faced with the Biblical paradox “In my Father’s house there are 
many mansions” [John, XIV, 2 ],

There are many possible candidates for theories within which correctness proofs can 
be carried out. This is not surprising, for we would expect different theories to arise 
from different pairings of specification and implementation styles and formalisations. 
Typical of the classes of theories for sequential systems are Hoare logics[Hoa89], predicate 
transform  techniques [Dij76], refinement calculi [MorQO], algebraic approaches based on 
morphisms [EM85], denotational semantics [Sto77], and term  rewriting systems [EM85]. 
The correctness of concurrent systems has been tackled using formalisms such as Milner’s 
CCS [Mil80b], UNITY [CM8 8 ] and tem poral logic [HaiS2 ].

As well as discussing particular techniques, it is possible to  attem pt a  general theory 
of correctness issues, by constructing yet another layer of theory. The most promising 
candidate for formalising tliis theory to  date has been category theory, which has been 
used extensively to explain correctness aspects of the theory building approach when 
expressed in algebraic term s [Bui’80]. This formalisation adds little to  our discussion 
of curriculum design, and wifi be inaccessible to most practitioners, and so wifi not be 
included here.

We should not assume th a t the adoption of mathematics in order to carry out proofs 
of correctness is universally accepted by the software engineering community at large. 
Although many years have passed since the famous “debate” between De Mifio et al and 
D ijkstra [DLP77] [Dij78], there is still a long way to go before the community is able to 
embrace formal correctness proofs as a  viable option. Ueaction to  the imposition of such 
approaches for the development of safety critical systems, for example, shows clearly 
tha t there is still a wide gulf between those practising software engineering in the large.

^Tliis example was provided during discussions at the ISTIP89 conference.
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and those demonstrating the techniques in the small. The key to  bridging this gap must 
lie with the education of software engineers, both in the continuing education of those 
currently practicing, and also the initial education of those about to  enter the profession.

4.6 T h e F orm alisation  o f  T h eories

A topic of continuous debate in Software Engineering is the degree of formalisation tha t 
should be used in our theory presentations. This debate is just a particular instantiation 
of the discussions on the formalisation of theories found in the Philosophy of Science. 
There is little to be gained by repeating all of this discussion here, bu t we should make 
a few salient points th a t are necessary for our task of curriculum design.

First, we must note th a t there is a difference between formalisation and axiomatisation. 
The la tte r we wiU take to  be the presentation of a theory as a  formal system, with the 
aim of carrying out purely syntactic deductions. Formalisation, on the other hand, whilst 
including axiomatisation, also includes the semantic techniques of using m athem atical 
models to reason about systems. Predicate calculus, for example, provides a purely 
formal system, th a t can be used axiomaticaUy, but if we allow the im portation of semantic 
results such as tautologies and equivalences we do not need to work entirely within 
the axiomatic framework®. It is im portant to note tha t we can accept formalisation 
without insisting upon axiomatisation in aU cases. Many of the argum ents offered against 
so-called formal methods are valid only against axiomatisations inherent in particular 
approaches.

Formalisation is not a  pre-requisite of science, only of the mathematico-scientific ap
proach: the logic we need for refutation can be the logic of any scientific discourse, 
formal or informal. It might be argued th a t inter-subjectively testable refutations are 
more easily found using formal presentations, but this is a  methodological concern, not 
a logical pre-requisite. Indeed, the desirability of formalisation in science is by no means 
universally accepted.

Suppes, a supporter of formalisation, asserts th a t “the ultim ate reason for formalisation is 
th a t it provides the best objective way we know to convince an opponent of a conceptual 
claim” [Sup6 8 , page 663]. D ijkstra makes a similar claim in defence of formalisation in 
Software Engineering:

“Eventually a nice formal treatm ent is always the most concise way of captur
ing our understanding and the most effective way of conveying the argument 
with all its convincing power to  someone else.” [Dij78, page 15].

Both of these claims are unscientific, in the sense of being unrefutable. They both hinge 
on term s such as “ultim ate” , “eventually” , “best” and “nice” . In addition, they both

®The fact that completeness and consistency allow us to formalise these semantic importations does 
not make our formalisation axiomatic. In this case the two approaches are equivalent in power.
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introduce the receivers in the discourse process, and yet say nothing about them. It 
seems unlikely th a t these claims can be substantiated if read as universally quantified 
over aU individuals, and in the absence of the required properties of these receivers they 
really say very little. The importance of the claims, however, becomes apparent if we 
consider them as methodological dogma, for then we must ask how claims can be brought 
about. W hat are the properties of “nice formal treatm ents” ? W hat m ust we instill in 
software engineers during their formative education so th a t they are suitable receivers 
of such discourse, and how do we achieve this so tha t they can use m athematics for 
scientific and exploratory discourse as web?

Even if we accept th a t under certain circumstances there may be advantages in formali
sation, these advantages may be outweighed by the disadvantages, especially if we adopt 
axiomatisation. Hempel, for example, asserts that:

“W hatever philosophical illumination may be obtainable by presenting a the
ory in axiomatic form will come only from axiomatisation of some particular
and appropriate kind, rather than  just any axiomatisation or even an espe
cially economic or elegant one.” [HemTO, page 52]

T hat is to  say, in choosing how to axiomatise, we need to  make theoretical decisions in 
performing our abstraction. Analysis carried out within the chosen axiomatisation will 
reflect these decisions, as well as those inherent in the formalisation itself. This echoes 
the more general point made earlier, th a t decision to delay the introduction of functional 
attributes into a theory presentation can still influence the design by choice of presenta
tion. W hat Hempel fails to  observe, however, is th a t informal presentations suffer from 
the same problem. The choice of natural language, for example, forces certain concepts 
on an author: certain African tribal languages, for example, lack m any of the concepts 
fundam ental to  western culture. The fact th a t this choice is usually made unselfcon
sciously tends to obscure the problem. Indeed, one of the advantages of formalisation 
is th a t it makes this problem explicit, but only if the engineer considers the m ethod of 
formalisation as a design decision.

Kyburg puts forward the suggestion th a t this problem can be resolved by observing 
tha t the the choice of axiomatisation system and the expression of the theory are not 
separable concerns [Kyb68j. The choice of system will actually be made during attem pts 
to axiomatise: in essence, exploratory discourse wiU take place during which no fixed 
axiomatic system is being adopted, prior to  informative and scientific discourse. If we 
fail to reflect this exploration during subsequent discourse, then we are intentionally 
abstracting away from the logic of scientific discovery. Criticising formalisation per se 
for a conscious abstraction seems unreasonable.

Another criticism is made by Schwartz, who questions the rôle of m athem atics in science 
in his paper “The Pernicious Influence of M athematics on Science” . Although he is 
adopting a deliberately provocative stance, he does make the observation tha t

“Give a m athem atician a situation th a t is in the least bit iU-defined-he will
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first make it well defined.” [Sch62, page 357].

The danger he sees in this is th a t assumptions made for the convenience of the m athe
matician become part of the theory, and moreover the scientist may come to accept these 
simplifications as part of the theory. He goes on to  say

“The physicist rightly dreads precise argum ent, since an argum ent which is 
only convincing if precise loses aU its force if the assumptions on wliich it is 
based are slightly changed.” [Sch62, page 357]

The physicist is seeking generalisations. The software engineer, however, is seeking only 
sufficient generalisation to cover an identified problem domain, and requires no more. If 
the formalisation is too specific then we run the risk of our approach not being scien
tific (for the task in hand), for the theory will be protected from refutation by auxiliary 
statem ents preventing us from experimenting in vast areas of the problem domain. As 
a technologist, however, the engineer knows th a t the computer wiU react in a  very pre
cise way: we accept th a t the program wiU behave in undefined ways if we violate our 
preconditions (so much so th a t professional engineers wiU adopt defensive programming 
strategies to  limit damage should it occur). In this case, formalisation presents no prob
lem th a t isn’t inherent in the design task. This is a balance th a t the engineer must 
achieve.

Zemanek observes th a t the task of formalisation

“starts  in the middle: we are born into an environment [in which] there are 
suggested and even self-suggesting formal notions, but at the beginning of any 
investigation, such notions are not precise enough. Their further development 
frequently leads to a  kind of separation-even of two hostile universes, the 
informal and the formal universe. In order to  avoid friction, tension and fights, 
it is necessary to  understand the virtues and limitations of formalisation and 
how its embedding in the real essential informal world can be done without 
harm .” [Zem75, page 118].

In order to achieve this understanding we will develop a more detailed account of “theory” 
in the next chapter, one th a t admits discussion of this relationship between universes. 
This account will also allow us to discuss the ways in wliich axiomatisation, model-based 
formalisation, and the use of analogies fit into our model of design.

This leads us to conjecture a heuristic to  accompany the model, th a t there must be 
a trend from the less formal to  the more formal as the design of a  software system 
proceeds. We are not going so far as to  say th a t formalisms should be used at the 
outset in constructing our theory, or th a t they should only be introduced at the stage 
of writing code in an accepted programming language. We must accept th a t there is a 
need to balance the advantages and ultim ate necessity of formalisation with the possible 
restrictions it may place on the problem being solved and the methods being used. This
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judgement m ust remain the prerogative of the engineer concerned: prejudging the issue 
allows the engineer to avoid loss of innocence, and is as flawed as telling a doctor what 
drugs to  prescribe before the patient has been seen. Formalisation m ust be seen as a tool 
th a t can be used: the “can” is im portant here, for just as the engineer should not be 
allowed to  escape the loss of innocence through imposed dogma, so the route of ignorance 
should be denied. Choosing not to  use formalisation because of inability to handle the 
tool is on a par with the surgeon who chooses not to  operate because he is unable to use 
a scalpel. One cannot question the decision not to operate, but one might question the 
right of the individual to  the title “surgeon” .

The fact th a t we m ust move from the informal to  the formal, and th a t this move is forced 
upon us not by ideology, or even methodology, but by the nature of the artifacts con
cerned, should be noted. If we ignore comparatively minor problems such as component 
failure and interference from external devices, and concentrate on an idealised machine, 
the computer embodies the atomic world of early W ittgenstein’s Tractatus. The be
haviour of the idealised machine depends only on those bit patterns in its memory, and 
those in its environment to  be presented on its input lines. These bits are interpreted in 
bit-functional fashion, analogous to  the tru th  functionality of propositional logic. The 
emergent behaviour of the machine is determined completely by these values (even if it 
is sometimes convenient to  view the process as non-deterministic by abstracting away 
from detail). Moreover, it is this property of the machine th a t allows the mathematico- 
scientific approach to  be used so successfully in our problem domain. The rules governing 
the bit-functionality of the system m ust be known, since these were the driving force be
hind the design of the machine itself. The civil engineer’s bridge cannot be so easily 
separated from its environment: its behaviour is not simply th a t emerging from consid
eration of its components together with the inputs modelled by the engineer. Factors too 
complex to model must be taken into account by the inclusion of safety features, using 
experience and judgement^.

We m ust beware, however, of the fallacy of moving this atomism from the target machine 
to the problem domain. Seeking to see the world at large in such simplistic terms is 
unlikely to be feasible, let alone practiced or helpful. The challenge facing the software 
engineer is to  identify appropriate ways of making this possible for particular, highly 
restricted, problem domains. This challenge is forced upon us by technology, but there 
is no need to restrict our exploration of the problem domain to  theories expressible in 
these term s, and no need to  dictate when the move to formalisation should take place;

We m ust also beware of the fallacy of equating formalisation with cooling, in the sense of 
excluding noise. It is perfectly feasible to  think in very warm terms with m athematics, 
if we are sufficiently fluent, and prepared to  use exploratory discourse. It is also quite

^In fact, computers are not as easily isolated as we might like to think. A well known brand of ioniser, 
marketed as ideal to combat fatigue from using computer VDU screens, has the interesting effect of 
causing the Macintosh Computer to “type by itself”. This phenomenon, a wonder to behold, has never 
been modelled in any specification, formal or otherwise, that the author has seen! It is convenient, and 
not too misleading, however, to proceed for these discussions as if total separation can be achieved. The 
task of achieving this separation will be left to the electrical engineer.
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easy to  think in very cool term s with natural language. It is, we would argue, this false 
association of cooling with formalisation th a t leads to  the unproductive divisions between 
the so-called formalists and the non-formalists.

4.7  Sum m ary

In this chapter we have introduced a simple model for the production of software systems. 
This model has as its basis the idea th a t system design is primarily the development of 
theories. The adoption of theories as the central theme of the process is not obvious. We 
could have considered using specifications or programs as the unifying theme, but then 
we would have had to forgo the benefits of access to other bodies of knowledge outside 
of computing.

We should note, however, th a t this model is not intended to capture only “good” design 
practices. It can equally well describe the process of sitting a t a term inal and solving 
a problem directly into assembly language. Here there is only one theory presentation. 
The phenomenological theory is expressed directly in terms of a  very computationally 
biased system; the diagram is constructive, in th a t the function of the artifact can be 
deduced from the program and a sufiicient knowledge of the theory of the programming 
language, but the mode of expression is likely to  obscure the function of the system.

Like aU models, this one is not intended to  be a perfect refiection of what actually 
happens when software design is taking place. More im portantly, it is not intended as 
an exemplar of what should take place. In reality, all projects are likely to progress in 
different ways. Occasionally an excellent fit with the model might be observed. More 
often things wiU be noted th a t conflict with, or are ignored by, the model. The im portant 
thing, however, is th a t we have established a  model so th a t conformance and deviation 
can be discussed.

Throughout the rest of this thesis the model outlined above will be refined and used 
as a  basis for discussing aspects of the curriculum. It is crucial, however, th a t the role 
of the model should be appreciated. The discourse contained in this thesis is largely 
exploratory, and not scientific. The discussions it contains, therefore, are enabled by the 
model, and do not rest upon it as a  premise. Refusal to accept the model should lead 
to progress, as reasons are given, and development, as new models are proposed. Rather 
than attem pt to refute the model here, however, we will depart from Popper and ask the 
reader to use it, warts and aU. This adoption is likely to lead the reader to  a  catalogue 
of disagreements by the end of the thesis: such is the nature of exploratory discourse.
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C h a p te r  5

T heories, M odels and A nalogies
"PFe have found that where science has progressed the farthest, the m ind has 
but regained from nature that which the m ind has put into nature. We have 
found a strange footprint on the shores o f  the unknown. We have devised 
profound theories, one after another, to account for its origins. A t  last, we 
have succeeded in reconstructing the creature that made the footprint. A nd  
Lo! it is our own. ”

Aurthur Eddington

In this chapter we will seek to  refine our notion of “theory” , and to  introduce the ideas of 
models and analogies. This is a  non-trivial undertaking, and we will be highly selective 
in the  views we present: no general survey of the  issues involved can be undertaken 
in a document of this size. We will not consider, for example, wider uses of the term  
theory, such as “the theory of physics” , which are intended to denote a wide range of 
concepts, including a num ber of more localised theories. This is the  usage Gries intends 
when he refers to “the theory of programming” . We wiU concentrate on individual 
theories th a t are intended to  refer to  a localised clustering of phenomena, and th a t will 
serve as specifications or programs. It should be stressed th a t there is no expectation 
of answering the question “what is a  theory?” . This has exercised the minds of the 
greatest philosophers of science for generations, as evidenced by the famous symposium 
held in 1969 and the debates th a t have followed it [Sup77], and there is no point even 
thinking we might come up with an answer. In fact, the current view seems to  be th a t 
we m ust accept many different notions of theory; all useful in their ways, but possibly 
irreconcilable.

In pursuit of our task, we require a view of theory th a t is powerful enough to  encompass 
the results of a wide range of activities undertaken by software engineers. Humans, who 
wiU be working with these theories, are flexible enough to  cope w ith such a complex 
domain. We also require a  notion of theory th a t can sensibly be embedded in a  machine. 
The current s ta te  of technology suggests th a t this will need to be a far more rigid type 
of theory. AnthropomorphicaUy, we might say th a t if the macliine is to  “understand” 
th a t it is being presented with a theory, the notion of theory involved m ust be rigidly 
defined and quite simple. Our com puter’s view, for example, m ust adm it formalisation, 
whereas the engineer’s earlier views need not. Thus, as we proceed with our development

111



www.manaraa.com

process, not only m ust our theory presentations become more formal, bu t there is also the 
possibility th a t our understanding of the term  “theory” must become more simplistic and 
precise. In addition, we must accept the shift in the status of our theory. At the outset, 
the theory is tentative, as the engineer explores the problem and a ttem pts to  construct a 
suitable presentation as the basis of contractual boundaries. There is every expectation 
th a t the theory wiU be refuted, coupled with the hope tha t such refutations will lead to  an 
improved understanding of the problem. As the design process draws to  a  close, however, 
the theory becomes instrum ental and is accepted as “sufficiently true” by the customer. 
There is no need therefore, for the final presentations to  be efficient aids to  understanding, 
or to facilitate refutation. Of course, if the customer subsequently decides to  negotiate 
a  new contract, and the engineer decides th a t some components of the design, such as 
parts of theories, can be reused, then a lack of explanatory power in an implementation 
will be a  drawback, and the engineer may want access to other presentations used during 
the design process. For this reason, it is sometimes suggested th a t we should not lose 
this explanatory power as a design proceeds, but embed explanations into code in the 
form of comments.

Just as our engineers m ust choose programming languages for implementation, so too 
they m ust choose appropriate notions of theory, and suitable presentation methods, for 
use during the design stages. Imposition  of any “methodology” relieves the engineer 
of this responsibility; ignorance of suitable tools and techniques renders the engineer 
incapable of discharging this responsibility adequately and professionally.

We will s ta rt our discussions by presenting an overview of the properties we might expect 
theories to possess. We wifi then present two views of theories, first, the received view, 
and then the semantic conception. The former is no longer widely accepted in the 
Pliilosophy of Science because it leads to many problems th a t in tu rn  lead to  a convoluted 
process of shoring up the view, and inhibiting applicability. We wifi attem pt to  apply 
it to the la tte r stages of design, however, firstly to  see if the criticisms still apply, and 
secondly because m any references to  theory in the Software Engineering literature are 
based on this view. The received view does not admit discussion of the earlier stages 
of design, for precisely the reasons it has lost acceptance in the Philosophy of Science, 
and so the semantic conception of theories wifi be introduced. This seems to  fit more 
naturally with the model of design outlined in the previous chapter, and also allows 
discussion of concepts such as “model” and “analogy” , a discussion necessary for our 
pedagogical purposes.

Once we have discussed theories generally, we wifi briefly review theory presentation 
techniques th a t are commonly used in Software Engineering. This wifi not be an exhaus
tive treatm ent, since much of this m aterial can be found elsewhere, bu t we wifi attem pt 
to  show how the techniques can be discussed within the semantic conception of theories. 
We wifi also introduce the proof obligations th a t accompany the use of these techniques 
when used as part of a theory construction process.

It is appropriate at this point to  remind the reader th a t we are not attem pting to define
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term s, far less to  dictate how they should be used within Software Engineering. Our 
intention is simply to come to  a better understanding of what constitutes a theory, and 
how theories can be used by bringing them  into contact with problems. It is possible, 
indeed likely, th a t by the end of this chapter the reader wiU feel less comfortable with the 
term s than  before reading it! This is a  reflection of challenges being made to  the intuitive 
notion of theory currently held: no apology is made for this. It is an im portant part of 
our task  to  challenge current educational practice, and if this involves disturbing in tu 
itively held notions, so be it. We would hope, of course, th a t as well as being destructive, 
by proposing the semantic conception of theories, a  framework will be provided within 
which the reader can subsequently reconstruct an improved understanding. This recon
struction can only be initiated here, however, and not completed. Moreover, the reader 
wiU probably want to  explore other views of theory before attem pting to  reconstruct 
within this view.

5*1 P ro p erties  o f  T h eories

Ryle builds a powerful analogy between theories and pathways [Ryl49, pages 272-275]. 
We will adopt this analogy, and extend it. To have a theory, according to Ryle, is to 
be aware of a  pathway from place to  place in such a way as to  be able both to  use the 
path , and also to  explain its whereabouts to  others. During the exploratory phase of 
theory building, the pathway is being constructed, and the builder m ust be prepared to 
stam p up and down the path  to  establish it. Paths may s ta rt out, then become bogged 
down, or run up against obstacles th a t cannot be overcome: in such cases they may be 
abandoned, but probably only if a  better path  can be found. Once a pa th  has been 
established, by sufficient stamping, it can be mapped out and made available for others 
to use. It no longer needs to  be established, although a new user may need the map to 
make use of it until familiarity is achieved. It becomes an instrum ent, rather than  an 
artifact under construction. It may still unexpectedly subside under use, of course, and 
then either be abandoned, or need to be shored up before it can be used again. Users 
may continue to walk subsided paths a t their own risk, of course.

In constructing a complex of paths it will almost certainly be more convenient if existing 
paths can be used instrumentaUy. This might include constructions th a t wiU become 
redundant once the complex of paths has been built: the logistics of m ajor roadworks 
shows this clearly. We might also want to include existing paths into our network. Thus 
our theory builder is also a theory user, both in terms of structure and also infrastruc
ture, so our software engineer needs to  be a rambler as weU as a  pathbuilder. Even if the 
engineer has a  clear goal in mind, the analogy of rambUng seems more appropriate than  
orienteering, because routes using existing pathways are likely to  be more efficient if they 
can be found, even if less direct. The re-use of existing components seems appropriate 
to  theory building as weU as programming. SommerviUe uses a  similar analogy when he 
talks about the engineer navigating in information hyperspace [Som87j. We are extend
ing the idea to a theory hyperspace, because we want to include expUcatioii alongside
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specification and implementation.

W hat properties do we expect these theories to  have^? First, we note th a t we usually 
admit the possibility of a  theory being false. We would not normally call the statem ent 
“Paris was the Capital of France in 1989” a theoretical statem ent as it is just a  statem ent 
of fact. A theory th a t comprises just a  collection of facts would not normally be accepted 
as a  theory in the conventional sense. Some theories have become so familiar with 
instrum ental use, however, th a t it seems impossible th a t they are wrong: possibly we 
now take them  as definitional. We will still accept these as theories, but insist th a t at 
least a  glimmer of doubt exists, even if the user rarely makes this doubt explicit. Equally, 
however, we usually entertain the belief th a t our theory may be true. In short, we accept 
tha t our theory is a conjecture.

We also expect our theories to  lead to  a  better “understanding” . This m ay mean several 
things, such as their acting as explanations of some phenomena, acting as interpretations 
into a better understood domain, providing a calculus for prediction, or exposing struc
ture. One im portant aspect of this increased understanding is the use of mechanistic 
explanations. This is a vague, but im portant, idea, as Gregory observes:

“Most curiously, it is difficult to  find out just what scientists or philosophers 
(or indeed the common man) take ‘machine’ to  mean, and yet mechanistic ex
planations are generally supposed to  be the most, or even the only, acceptable 
kind of explanation in science.” [Gre84, page 73]

Gregory goes on to  to  distinguish between the machine, which embodies purpose or 
function, and the mechanisms it contains, which embody only causality, although they 
may assume functions when used. Using this terminology, we can sta te  our theory 
building aim as finding a mechanistic explanation, or theory, with the purpose of using 
particular schemas, where the mechanisms upon which the machine depends are provided 
by our computing devices. This mechanistic explanation alone may not be sufficient, 
however, for if we wish our theory to evolve we might require explanations of a  higher 
order, where the mechanisms are easier to  reason about. Moreover, we are likely to 
construct such explanations en route to our final implementation.

We also expect a theory to  tell us what is the case: to make some assertions or propo
sitions. This is not enough, however, for we usually expect some coherence to  these 
assertions. A random collection of propositions is not normally thought of as a theory. 
We m ight, of course, discover some model for the collection, and proclaim this collec
tion as a  theory of this model. In general, however, we wiU not call something a theory 
unless we have some idea both th a t there is a model, and also th a t we know roughly 
what it is. This is a restatem ent of one of our proof obligations, namely th a t all theories 
must be consistent otherwise no such model will exist. Note th a t again this presupposes 
self conscious activity^. Inconsistent theories pose no problems for the unselfconscious

^This section draws heavily on Achinstein [Ach68, pages 122-129],
^For a detailed discussion of the relationship between consistency, completeness and selfconsciousness,
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designer, who will simply proceed in ignorance until problems are noticed, then resolve 
them  locally. Some of the assertions in our theory wiU have different status from others. 
Moreover, some assertions will probably not be made explicitly, but will accompany our 
choice of presentation technique. Adoption of equality, for example, wiU probably not 
be accompanied by the axioms for equivalence relations, but these will be used; similarly 
axioms for our deductive apparatus and some of our da ta  types wiU be assumed. In 
essence, we will adopt a research program  [LakYO], and work within this. As-well as our 
assertions being part of the theory, we also expect some form of logical closure, allowing 
theorems provable within our adopted logic to  be accepted as part of the theory.

We also have the expectation th a t our theory has some purpose, in the sense th a t it 
helps us to  meet some identified goal. Thus a random collection of assertions, even if 
clustered around some phenomenon, wiU not comprise a theory. Moreover, the arbitrary 
conjunction of two theories wiU not, in general, comprise a  theory. The conjunction of 
the theory of natural numbers together with the theory of the digestive system in dogs 
win not comprise a theory unless we are setting out to study something like the statem ent 
th a t dogs’ digestion times are related to  the Fibonacci sequence.

Achinstein also suggests th a t we should expect a  theory to be maximal, in the sense tha t 
if we already have a general theory we would not usually call the restricted application 
of th a t theory a theory in its own right. W hilst this seems sensible when viewed as 
restriction, it is less obvious th a t we would require something to  lose its status as a 
theory due to  subsequent generalisation or enrichment. We wiU not insist on theories 
being maximal, for many of our specification techniques are based upon a process of 
enrichment, and it is convenient to think of the building blocks as theories throughout. 
We do not only want our theory of natural numbers to become only a part of the theory 
of stacks of natural numbers should we present one; we also want it to  preserve its 
individual identity.

5.2 T h e R eceived  V iew  o f T h eories

The “received view” is the name given to the view of theories generally held, in some 
form or another, until the second half of this century. This view has developed through 
a number of reformulations, each one trying to  overcome some of the problems being 
raised by the previous version. The received view is accompanied by the assertion th a t 
all theories can be represented in a  canonical form (not necessarily th a t they are aU 
presented in this way). Suppe develops various versions of this canonical form th a t have 
been accepted during its development. Presented below is his formulation of the final 
version given much credence in the literature [SupYY, pages 50-53]. He notes th a t a 
theory, according to the received view, comprises:

see [Smu87].
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• A first order (possibly modal) language, L, and calculus, K , in term s of which the 
theory is presented.

• The constants in the language which are partitioned into two classes, F o , contain
ing the observable term s, and F y , containing the theoretical, or non-observable, 
terms.

• L  and K  give rise to  three sublanguages and claculi as follows

— Loy which contains Vq , bu t no quantified forms or modalities, and no term s 
in F y . K o  is just the restriction of I f  to  To, where any term s arising not in 
Vq are defined explicitly in K q . Furthermore, K q m ust adm it at least one 
model.

— Uq extends L q by allowing quantifiers and modalities. K q is the restriction 
of K  to Kq

— L t  is a  restriction of L to remove those terms in F q . A y is a restriction of 
K  to  Ty.

L  is not simply the conjunction of these sublanguages, however, because there will 
usually be many mixed terms.

• To is given a semantic interpretation in which

— The domain comprises observable events—all objects, properties and relations 
in this domain m ust be directly observable.

— Values of all variables used in L q  m ust be interpretable as expressions in To.

These interpretations of T o , and hence of A o , are partial interpretations of T and 
A , and will become interpretations of V q  and K q  when suitable interpretations of 
logical terms are added.

• Theoretical term s are partially interpreted by theoretical postulates (axioms in 
which only terms from F y  occur) and a finite set of correspondence rules, C , 
which involve term s from F y  and F o , but no additional, extra-logical, terms.

Before considering the empirical significance of the received view, let us observe th a t 
there is a  degenerate case of interest. If V q  is empty, the theory ceases to be scientific, 
in the sense tha t clearly no observations can be made to  refute it. Our terms will aU 
be groundless, and we are committed to working purely theoretically. In this case, we 
are working in a domain tha t m athematicians and logicians call model theory [Bri7 7 ]. 
This sense of “theory” is adopted by formalists in Computer Science, particularly those 
interested in algebraic methods [BG77]. It does not allow us to  discuss how theories are 
grounded in observations, however, so what purpose can it serve? The answer is th a t 
once we have made our phenomenological theory instrum ental, refutation ceases to be 
an issue, so we can consider all term s as theoretical without concern. The theory can 
always be re-interpreted to include observation term s, and thus provide a grounding at
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a later stage, such as might occur during acceptance testing. This is also the reason th a t 
Hoare can embark on the mathematico-scientific method. The theory has been made 
analytic rather than  synthetic, to  adopt K an t’s term s [Kan29]. We wiU not endorse 
the view th a t analytic theories are meaningless, however, simply th a t their meaning 
comes from the relationships imposed between theoretical entities. In particular, we can 
provide a meaning in term s of other theoretical objects. Thus we can interpret theories 
as algebras, or classes of algebras, simply by seeking out structures with corresponding 
relationships between term s, th a t is, by identifying morphisms between the structures. 
Once our theory is taken as instrum ental, therefore, we can utilise m athem atical models 
with impunity. We should observe th a t tliis need not only be during the later stages of 
design, for we might well consider theories instrumentaUy during exploratory discourse 
(during luhat i f . . .  type discussions).

Let us suppose th a t we want to  continue to  think of our theories as empirical, in the sense 
th a t we want some correspondence between their term s and observables in the domain of 
application. How easily can this be done with the received view? We should note th a t one 
of the reasons for the abandonment of the received view was a feeling th a t this question is 
inherently unanswerable in true scientific practice, using the given canonical form, so we 
should not expect any decisive answers here. It seems th a t a num ber of fairly arbitrary 
choices have to be made. In particular, how might we distinguish between observables 
and unobservables? We wiU consider just one simple example to  illustrate how this might 
be done, then move on to  a  richer model where the problems do not arise.

Consider a  theory of stacks. F irst, let us note th a t such a theory is not reaUy a theory 
of stacks, in the sense th a t it teUs us how a cluster of stacks might behave coUectively, 
rather it is a  theory of “stackness” . It expounds those properties we might expect of 
an object th a t we are happy to  call a  stack. Since we need such a theory, and are not 
happy just to observe stackness as primitive, we can argue th a t stackness cannot be an 
observable concept: therefore any expressions th a t denote stacks (th a t is, objects we are 
asserting to  have these properties) m ust be theoretical terms. For the sake of examples, 
let us suppose th a t we are interested only in stacks of natural numbers. Are term s in
volving only numbers theoretical or observable? We might consider th a t numbers are 
primitive enough for our customer, who is our archetypical observer, to observe directly. 
We could, of course, note th a t numbers have their own theory, and it is a strange notion 
of theory th a t allows numbers to  be observable, but stacks to  be theoretical simply on the 
basis on customer experience. This is precisely the problem th a t faced philosophers of 
science, but they phrased it in term s of instrum entation, rather than  customers. Things 
observed through complex instrum entation (with corresponding theories) were consid
ered theoretical; things observed by eye were observable, even though the eye could be 
considered an instrum ent of observation.

If we accept th a t stackness is a theoretical concept, however, whereas numbers are ob
servable term s, then we can explain some of the interesting features of abstract da ta  
types quite coherently. We can consider an object hidden inside a box, with a  limited 
num ber of actions th a t can be performed, and a number of observables available to  us
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via experimental method. Consider the theory of stackness, expressed in OBJ, shown in 
figure 5.1

OBJ

SORTS

OPS

VARS

EQNS

STACK /  NAT BOOL

S ta ck

new Stack: -> S ta c k
p u sh : Nat S ta ck “ > S ta c k
t o p : S ta c k -> Nat
d e l e t e : S ta c k -> S ta c k
isE m p ty : S ta c k -> Bool

s : S ta c k  
n :N a t

( t o p ( p u s h ( n , s ) ) = n )  
( d e l e t e ( p u s h ( n , s ) ) = s )
( isEm pty(new Stack)=T)
( isEm pty ( p u s h ( n , s ) ) =F)

JBO

Figure 5.1: A Theory of Stacks

We can note th a t the term  delete{s) is a  theoretical term . It is groundless, unless we 
add a correspondence rule relating it to  observables. This is done with the equation 
delete[push{n^ s)) = s. We should note, however, th a t we are obtaining only a partial 
interpretation of “stackness” : we are constraining the meaning of the term  to objects 
th a t have certain properties pertaining to  observables, but we do not have complete 
knowledge of what is actually inside the box. We can add meaning to  our theory, with 
more correspondence rules, such as grounding the terms denoting stacks in terms of lists, 
for example, but we expect this extension to  be conservative. Note also th a t terms th a t 
are ungrounded by any rules, such as delete{newstack))y remain meaningless. If we wish 
to be able to observe some behaviour corresponding to such term s, we m ust provide a 
semantics. Then, of course, it would cease to  be meaningless, for our theory of stackness 
would be asserting th a t deleting the top of an empty stack is was a meaningful thing to 
do.

If we wish to consider the design process in terms of the received view, we can attem pt 
something along the following lines. F irst, we build a theory with observables tha t 
correspond to  the custom er’s perception of observables in the problem (objects such as 
invoices, payroll numbers or sensor readings). We then attem pt to  refute this theory by 
appeal to scientific practice, using only the observables we have established. We then 
produce a new theory in which we allow only observables available to some machine 
(typically a  high-level virtual machine, rather than a primitive bit-functional one), and 
where all theoretical term s are grounded in term s of these. Thus we express stackness in
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term s of arrays and pointers, for example, as well as the operations we wish to  perform. 
These will be theoretical term s if the theory is viewed by the user (for arrays and pointers 
wiU not be observable) but observable terms for the machine. The machine wiU then 
conform to  this theory, treating assertions as instructions, according to  some met a-theory. 
In OBJ, for example, the equations will be interpreted as left-right rewrite rules.

Such a discussion is of little benefit to  the software engineer faced with the task of 
designing a system, however, for the view being taken of theories is too far removed from 
the intuitive requirements we have laid down for them. The received view is an extreme 
one, intended to  provide a rationalisation in term s of a canonical form. This canonical 
form does not seem to sit well with Software Engineering, unless we restrict attention 
to the instrum ental use of theories, in which case it degenerates to  m athem atical model 
theory. Rather than  attem pt to  rescue the received view, we will tu rn  our attention to  
the semantic conception of theories, which has been developed in more recent times to 
overcome these limitations.

5,3 T h e S em an tic  C on cep tion  o f  T h eories

Just as the received view was proposed and revised over a  number of years, so too the 
semantic conception is more a programme of ideas than  a static entity. We will not 
a ttem pt an historical reconstruction of this approach, but simply present one of the 
more recent expositions of it [Sup89]. Central to the semantic conception of theories 
is the creation of an additional layer between theories and “reality” th a t will allow us 
to  talk  of idealised models of the behaviour of real systems. The advantage for us is 
th a t customers’ problems are frequently already posed in term s of such models, for their 
information systems and control systems are defined in terms of abstractions. Customers 
are not names and account numbers, but flesh and blood, and controlled plant is not 
just a set of functions, but m etal and plastic. Although the case for utilising idealised 
worlds has to  be made quite carefully for natural scientists, this case is unnecessary for 
information scientists, as the discipline itself is inherently concerned with a layer above 
reality. No justiflcation of the approach need be given other than  the justification for 
information science itself, and th a t will be taken as self-evident.

The semantic conception admits a  wide-ranging discussion of models, and allows for 
several presentations of the same theory. It also allows us to  discuss the fact th a t models 
and theories are not cleanly distinguishable. Very often a theory is interpreted as a  model, 
and a model is taken as identifying a theory. This accords with scientific practice: many 
scientific theories are posed as models, and many theories end up being used as models. 
Whereas the received view rationalises this confusion out of the discussion, by considering 
only restricted canonical representations, the semantic conception brings such issues to 
the fore, which is far more useful for our pedagogical purposes.

Central to the semantic conception is the view th a t theories are not linguistic entities 
(as in the received view) but extralinguistic. They may be form ulated or presented in
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a num ber of different linguistic systems, but changes of formulation do not change the 
underlying theory. W ith this change of emphasis, theories can now be viewed as models 
for their linguistic formulations. These models can be thought of as formal structures 
acting as interpretations of various theory presentations, and these presentations need not 
be equivalent. We can have, for example, partial formulations of theories, resulting in a 
num ber of presentations of different aspects of the theory. In this way we can utilise CCS, 
VDM and OBJ to  present specifications of a  system, and these specifications will not be 
equivalent, yet we can still accept th a t we are building just one theory. In architectural 
term s, the theory captures what the building is to be, but it may be formulated using 
various techniques such as drawing elevations, specifying services, and providing energy 
equations. The theory is constrained by the to tality  of these formulations. Theory thus 
becomes a unify force in our design.

Rather than deal with the behaviour of real systems directly, the semantic conception 
suggests we consider abstract “physical systems” , th a t are idealised versions of real world 
phenomena. We will use the term  “idealised systems” rather than  “physical systems” 
here, for it seems counter-intuitive to  introduce the term  “physical” in relation to  infor
m ation systems. We identify the intended scope of the theory, and then extract just those 
param eters in which we are interested^. This makes the assumption th a t useful problems 
can be tackled by consideration of behaviours governed by just those param eters, and 
th a t for the purpose of solving these problems the effects of all other param eters are 
negligible. This is precisely what happens when physicists consider frictionless planes, 
point masses and perfect spheres. It is also what happens when the software engineer 
assumes th a t employees can be considered as personnel numbers, or th a t sensor readings 
are just real numbers. We cannot subsequently ask how many toes an employee has, or 
how long the sensor reading takes to stabilise. The idealised system can be completely 
characterised by the values of the identified param eters at any given time. We will con
sider these param eters to constitute the sta te  of the system: then the behaviour of an 
idealised system can be represented as a set of sequences of states. The behaviour of an 
idealised system under a  given set of initial conditions wiU correspond to  a  subset of the 
behaviour, comprising just one sequence if the system is deterministic.

The task of our theory is to constrain the behaviours of idealised systems so th a t they 
correspond to how real world phenomena would behave if behaviour were determined 
only by the param eters reflected in the idealised state. Implicit in this is the notion th a t 
the theory identifies what configurations of state  are possible, and also what states can 
result from a given starting state , the la tte r being deterministic or non-deterministic. 
This clearly iits very neatly with our assertion th a t it is useful to consider programs 
as theories, as a standard view of programs is th a t they determine machine behaviour 
through sequences of states.

This constraining is achieved by taking the theory presentation as determining a class of

^Analysis of this process is termed measurement theory, and will not be considered further here: more 
details can be found in [Rob79].
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idealised systems, and imposing some structure on them. This structure can be viewed in 
a num ber of ways, typically as relational, set theoretic or state-transitional m athem atical 
objects. In fact, these are surface differences, for the three views are easily reconciled. 
Theory presentations can be construed as comprising a num ber of laws, constraining 
the behaviour of the idealised system. These laws might be given as laws o f succession, 
describing how the states are related over transitions, laws o f coexistence, describing how 
states may be regarded as equivalent, or laws o f interaction, describing how the system 
behaves in term s of other theories. These three types of laws can be seen as closely 
related to state  based, algebraic and process based specifications respectively.

We should observe th a t our theory presentation admits amplified usage, th a t is, it is 
capable of referring to  more than  one thing. This is necessary because we wish our 
assertions to  refer not only to one or more idealised system, but also to  be interpretable 
as the theory itself, or as real world phenomena. We expect to  be able to interpret a 
presentation as laws governing sta te  transitions, constraints on sets of states, or assertions 
about the real world. A theory of stacks, therefore, should be interpretable as specifying 
relations between states th a t must hold, transitions th a t a  typical object might undergo 
if it is indeed a stack, and whether a  real world object is stack-like. We also accept tha t 
our presentations can be partial, in the sense th a t they might refer only to  some of the 
param eters in our idealised world.

We should point out at this stage tha t the semantic conception, as generally presented, 
assumes th a t systems vary with time. This is understandable, because most physical 
systems are thought of in this way. For our purposes, however, introducing time may be 
an unnecessary distraction, for we are frequently interested in transitions th a t arise as 
results of events such as issuing commands. Tliis need not present us with a  problem, for 
we can observe th a t what the physicist thinks of as “time” is really nothing more than  
a sequence of events, typically clock ticks, so we can interpret our sequence of events as 
denoting the passage of time. Alternatively, we can embed our sequence of events into the 
sta te  of the idealised system, then rely on the passage of time to  invoke their execution. 
Thus we can internalise or externalise the events driving our system. Moreover, events 
themselves may be considered as taking param eters: these param eters may be kept in 
the state , or each param eter can be considered as defining a different event. By a similar 
argum ent we can internalise or externalise our programs and data.

Let us illustrate this view so far, as it might apply to the “programming” end of the design 
process, by using a simple computer architecture, Landings SECD machine [Lan64]. We 
observe th a t the abstraction of the machine to  a state comprising a stack, an environment, 
a control list, and a dump, is inherent in the problem. Our idealised system is thus present 
in the problem situation. We will see later th a t there are several problems th a t can give 
rise to  this abstraction. We could, of course, seek to reformulate the theory utilising a 
different state  model. We wiU sta rt with a general theory of the machine itself. This 
comprises laws of succession such as

(5") (^;) (LDC æ .C) (D) — . (z.5!) (E) (C ) (D)
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indicating how individual transitions occur over a clock tick (note th a t we have inter
nalised our program). It defines a  relation between pairs of states. We could equally weU 
just consider an SED machine, with events such as

(S ) (E ) (D ) %  (* .5 ) (E )  (D)

We also have laws of equivalence, such as those giving the algebra of objects on the stack.

( ( 3  +  4 ).5 ) (E ) (C ) (D ) = {7.S) (E )  (C ) (D)

The relational structure forged by this theory presentation is our theory. The presen
tation  also gives rise to a  num ber of theory induced idealised systems, th a t is, a set 
of possible execution sequences. W hat are we capturing with these induced systems? 
There are several things we might be trying to  theorise about. Let us assume th a t we 
are trying to capture the execution of LISP S-expressions, which are thus taken as third- 
world empirical objects. We need to show th a t a suitable correspondence exists between 
these expressions and states identified in the idealised system. Each S-Expression to be 
evaluated needs to  be reflected by a sta te  of the SECD macliine, together with suitable 
closures and name bindings in the environment: this is the task of the compiler. Each 
s ta te  with STO P  at the head of its control list can be associated with a  result, held 
on the stack. States with control lists not representing S-Expressions, such as will arise 
after partial evaluation, can simply be given the semantics “evaluating” . Any sta te  with 
an em pty stack, and STO P  a t the head of the control list will represent the  null expres
sion. Refutation of our theory at this stage would mean finding an S-Expression tha t 
is properly compiled to  SECD code, but executes incorrectly. An idealised system now 
corresponds to the evaluation of a  particular S-Expression. Thus our theory presentation 
gives us as possible models a t least:

• The theory which is the relational structure of all possible machine states. In 
particular, we can always present tliis as an algebraic structure, using set-theoretic 
terms.

• The behaviour of idealised machines.

• The representation of phenomena such as the execution of S-Expressions.

We can observe here th a t our theory also admits as a phenomenological model the archi
tecture of an implem tation of the SECD machine. Thus, via the theory, we can create 
morphisms between a piece of hardware and the execution of Lisp S-Expressions. This is 
the key to implementation. The theory building approach applies not only to  Software 
Engineering, but also to  hardware design. Adoption of this model of the design process, 
therefore, will enable us to  integrate the curriculum across a wide range of topics, from 
the “softer” aspects of system design, where exploratory discourse is being used to  con
struct theories, to the “hard” area of logic design. The tools, techniques and modes of
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discourse used may be different, but we have found a unifying theme for the discipline, 
as advocated by Gibbs and Tucker [GT8 6 ].

The theory outlined above is a  theory of SECD programs, bu t in what sense is an 
individual “program ” , just one control list and associated bindings and closures, a  theory? 
Quite simply, it is a  restriction of the above theory. In general, a program will admit 
m any behaviours of phenomenological systems dependent on input da ta  (we will consider 
databases with persistent da ta  as external to  the system: they could equally well be 
considered part of the program ), thus a  program is a theory determining a restricted 
class of theory induced idealised systems, and hence a restricted class of phenomenological 
systems, or computations. Note th a t in order to  take this view, we have violated the 
maximal notion of theories, th a t is, we want both the theory of all Pascal programs 
and also the theory of just one Pascal program to coexist. We could take other views, 
insisting, for example, th a t our program is an auxiUiary statem ent, or even th a t our 
program  is a statem ent in another theory—the experimental situation—and use laws of 
interaction to  define our behaviours. Such approaches seem artificial, however, so we will 
abandon the maximal view of theories.

The given example models an inherently functional phenomenon in term s of s ta te  tran 
sitions, using laws of consequence and coexistence. We should stress th a t this was only 
an example, and several styles of theory formulation exist for tackling different kinds of 
problems. We could formulate a theory of “stackness” for example by laws of coexistence 
(a typical algebraic specification), by laws of consequence relating pre and post states 
implicitly (as in Z or VDM), or explicitly (as in Pascal), or even by constructing a sta te  
as a num ber of interacting cells, each of which has its own theory ( as in CCS).

5.4  T h eory  P resen ta tio n s

Constructing a theory presentation requires at least the following two steps:

• Identification of a suitable state-space to  act as the theory. This involves analysis 
of the problem to ensure th a t only sensible abstractions are taking place.

• Formulation of laws to  restrict the space to  those states of interest only, and build 
the relational structure between these states.

We will delay discussion of selecting a suitable sta te  space, and tu rn  to  ask what we expect 
of a  theory presentation language. Clearly we need a language powerful enough to assert 
properties of our phenomenological system, by capturing properties and relations. A first 
order logic wiU usually suffice for this, although we might want to  include modalities, 
to allow the modelling of the passing of time without introducing quantified intervals 
explicitly, for example. We will, in general, also require extra-logical features, such as the 
ability to m anipulate functions and relations. We will im port these into our presentation 
language as required, just as the physicist feels free to utilise differential equations, for 
example, without formulating an axiomatic treatm ent every time.
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We will now briefly consider particular styles of theory presentation, and the proof obli
gations their adoption places on the engineer.

Laws of C oexistence

The style of presentation using laws of coexistence to  form equivalence classes of term s 
is usually term ed “algebraic specification” in Software Engineering. This formalisation 
is founded on the interpretation of variables as components of our s ta te  space, and 
operations as sta te  transitions. Each class is intended to refer to  a  particular situation 
in our phenomenological system, but we need to  adopt a  m etatheoreticai view here, 
regarding how our equivalences are to  be understood. We could adopt the view th a t 
only terms indicated as equivalent by the theory are to  be taken as such (an initial 
view), or we could accept th a t everything is equivalent unless the theory forces term s to 
be non-equivalent (a final view), or we could adopt a  mixture of the two. The advantage 
of adopting an initial view is tha t we can use a theorem of universal algebra to  the effect 
th a t all algebraic structures interpreted as initial objects of some equatioiial theory are 
isomorphic to the term  algebra of th a t theory, and consequently to each other [EM85, 
page 8 6 ]. This will allow us to  m anipulate the theory via its term  algebra, or any other 
initial model, rather than  using the theory presentation directly. It is this property th a t 
allows us to  use set algebra rather than  set theory in most m athem atical contexts. We 
will assume initial semantics in aU th a t follows.

It is usual to  expect th a t equational specifications should posses the property tha t aU 
terms should rewrite, under the equivalence relations, to  some canonical form, for this 
allows us to  use the quotient algebra in describing phenomenological systems. If we 
accept this as a proof obligation, it will be discharged by structural induction over the 
language used in the presentation.

In addition, we have the proof of consistency as an obligation. This can be discharged 
by finding a non-trivial model. Clearly the term  algebra is such a model, but we wiU 
insist th a t, there are a t least two distinct terms in the quotient algebra, and th a t no two 
canonical terms are forced to  be equal by the theory.

Completeness reduces to the obligation to  prove th a t all term s th a t should be in the 
same equivalence class are so placed. Clearly, showing phenomenological completeness 
can only be done by attem pted refutation, or by exhaustive testing, but we can insist 
th a t something is said about all possible meaningful constructions in the idealised sys
tem . This amounts to  the obligation th a t there should be a set of equations governing 
the behaviour of all accessors to  the state , one for each possible constructor. Stacks, for 
example, can be constructed, in canonical form, by newstack and push. Thus we expect 
two equations governing the behaviour of each accessor, if to tal, or one for each partial 
accessor (such as delete., which is undefined for newstack). If we wish to  capture nonde- 
terministic systems algebraically, however, we need to  revise this notion of completeness. 
For a detailed discussion of nondeterminism and algebraic specifications see [Mat90].

124



www.manaraa.com

If we structure our idealised system into several subsystems, we might find some obli
gations as result of laws of interaction. Typical of the obligations th a t might arise here 
are proofs of conservative extension arising as a  result of enrichments, and proofs of type 
compatibiUty, in instantiations of generics.

Laws of C onsequence

If we present theories using primarily laws of consequence then we have a different m an
ifestation of proof obligations. F irst, we have to  show th a t our assumption th a t time 
can be modelled by sequences of events is well-founded, th a t is, th a t suitable sequences 
exist. In particular, we m ust show th a t every event can result in an acceptable state. In 
a traditional pre-post condition specification, this is discharged by showing th a t there 
exists at least one assignment of correctly typed param eters such th a t

(pre — condition A invariant) ==>■ invariant

This prevents an open-ended sequence, where the final “event” does not result in a  state  
within the theory, th a t is, it shows term ination is possible for every event.

It is also sensible to  show th a t aU events are necessary, th a t is, th a t there exists at 
least one possible sta te  from which an event can occur. We might argue for a  stronger 
condition, namely th a t this one sta te  must be reachable for some execution sequence. 
This condition is, in general, too strong to  be provable.

We also have our consistency requirement, which amounts to  the assertion th a t there 
exists a t least one state th a t satisfies the theory. Again this is not a very strong condition, 
for a  s ta te  th a t meets the requirement for the theory, but from which no transition is 
defined is a rather sterile theory, but setting proof conditions th a t are too strong renders 
the meeting of obligations impossible.

Laws o f Interaction

Laws of interaction are clearly of great significance for our purposes, for they wiU capture 
the ways in which the theories of mechanisms inside our machine interact to implement 
our theoretical schemas in mechanistic ways. The law of composition in a  Hoare logic, 
for example, could be viewed as laws of interaction between the theories of two different 
programming constructs. A more likely use of laws of interaction, however, is the par
titioning of state , giving rise to  several idealised subsystems, each described by its own 
theory, where the to ta l idealised system is the emergent behaviour of the interactions of 
these subsystems.

This raises the im portant question as to how we view the relationships between our 
mechanisms and our machines. We could accept the “ghost in the machine” view, wliich 
suggests th a t every mechanism has part of the essence of the machines in which it could 
be used. Thus every assignment statem ent would have to contain some of the essence
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of payroll systems, sorting algorithms, and so on. This has the a ttraction  th a t under
standing of the whole requires nothing more than  an understanding of the parts: when 
the mechanisms are brought together the  essence of the system is whole, and the ghost 
emerges. This seems difficult to  accept! The alternative, however, is to  accept th a t the 
whole machine is more than  just the  sum of its parts. The laws of interaction contribute 
to  the understanding of the machine as a  whole. If we accept this more likely scenario, 
then we must also accept th a t teaching details of mechanisms will not be sufficient to  lead 
to  an understanding of how these mechanisms might be used in implementing machines. 
Students wiU not learn to  design systems simply by learning about mechanisms such as 
programming languages.

The identification and discharge of proof obligations here is much more complicated. We 
have proof obligations pertaining to  individual theories, of course, such as consistency, 
but also obligations relating to  the global theory and the interaction effects. Space does 
not perm it a  fuU discussion of these, but for an introduction to the subject, see [CP90a].

Structuring P resentations

One further expected aspect of our presentation language is its ability to  structure our 
theory presentation in some way. This, unfortunately, is not adequately refiected in 
discussion of the semantic conception. Laws of interaction, intended primarily to  allow 
discussion of the use of experimental methods, with equipment th a t has its own theory, 
can be used to  discuss some of the required properties, but in a very “flat” fashion. Laws 
of interaction are intended to discuss the situation where a theory shares param eters 
with another theory, or forces functional dependencies on another theory. It does not 
allow, for example, a theory to  be parameterised by another theory.

Frawley has carried out some initial work in this area for natural sciences by studying 
discourse processes amongst scientists, and attem pting to  identify a num ber of primitive 
term s, with the intention of building a computational model of scientific discourse[Fra8 6 , 
pages 78-89]. His work leads to  the suggestion th a t science is underpinned by a con
tinually changing semantic net, and th a t this net can be reduced to a  computational 
semantic formalism. Scientific progress corresponds to changes in the structure of the 
semantic net. In this view, the nature of a  program as a theory can be inverted to give 
the statem ent th a t a  theory is a  program.

Theories encountered in Software Engineering are becoming increasingly complex. This 
complexity causes no problems for the logic of our model, but the pragm atics do need 
further consideration. For purely scientific discourse, structure is a  convenience but not 
a  necessity: we could trea t all of our proofs as flat structures, or even include lemmas 
and existing theorems in ad hoc ways. Similarly programs w ritten in this way cause 
no problems for the machines they run on. If we consider informative or exploratory 
discourse, however, with hum an receivers, then the need for structure becomes obvious. 
The properties we require of the presentation can only really be decided when we fix 
a  purpose for the discourse, but typically we require recipients of the discourse to gain
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some understanding of the system, or parts of the system. Such understanding is unlikely 
to come with a presentation th a t is simply a collection of unstructured relations and 
predicates. We must impose structure on our presentation: in a sense, we m ust build a 
theory, or a t least a model, of our theory presentations.

The need to  impose structure does arise in natural sciences, but there it is handled al
most exclusively by appeal to  the terminology of the discipline (categorisations) or by 
appeal to  m athematics. Physicists, for example, make extensive use of states expressed 
in term s of vectors, matrices and tensors, which are just ways of building higher order 
m athem atical structures, and then make free use of the properties of these structures, 
such as tensor calculus or m atrix algebra. Similar strategies are used by the Software 
Engineer, but in general the structures used have not yet become part of a m athematical 
culture. In part this is because of the youth of the discipline, but it is also due to  the 
fact th a t the later stages of design are influenced by the need to  seek structures available 
in programming languages. Thus a partially ordered set in a  phenomenological “specifi
cation” may tu rn  into a list in a “ design” , and a linked list implemented with pointers 
in an “implementation” , as the theory is presented in more refined and deterministic 
forms. The software engineer also has to  deal with problems th a t have far more complex 
state-spaces than  does the natural scientist. As a result of this the theories are more 
complex, and more structure is needed in their presentation. As D ijkstra has observed,

“The programmer has to  be able to  think in terms of conceptual hierarchies 
th a t are much deeper than  any single mind ever needed to  face before,” 
[Dij89, page 1400]

The fact th a t the required structuring mechanisms are frequently not part of m athe
m atical culture means th a t the software engineer needs to worry about where to  get 
the structures from, a problem not usually facing the physicist. Some structures come 
with the adoption of specification languages, such as the schemas of Z, extension and 
combination operators in CLEAR, and the agent constructors and combinators of CCS. 
Frequently, however, engineers need to  design their own structures to meet their percep
tions of the problem, in which case they need to  provide the theories of these structures 
explicitly. Moreover, they may perceive areas of regularity, leading to  the re-use of cer
tain structures. In this case, they either have to  build a  theory of such re-use, or select 
presentation languages th a t already offer such a capability, such as the image facility in 
0B J3  [GW88], param eters in schemas, or inheritance in EIFFEL [Mey88 j. We should 
note th a t the engineer is interested in re-use in at least three dimensions:

• Re-use between problems, using presentations found in designing one system when 
designing similar systems, at the level of both specification components and pro
gramming language code

• Re-use within a presentation, capturing regularity in the sta te  space.

• Re-use between presentations during the design process, where morphisms allow 
structures to  be transformed rather than  thrown away.
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We will explore re-use in more detail in the next section, where we consider the rôle of 
analogies in our model.

Finding suitable structuring mechanisms in theory presentations, a t all levels from spec
ifications, code and even user guides (where hypertext is being explored, for example), 
is a m ajor th rust of Computer Science research. To date, however, most of the research 
has been very localised, focussing on particular specification styles or programming lan
guages, for example, and little work has been done on generalisations and transference 
between domains. One advantage of the theory building view is th a t it makes explicit ar
eas of shared concern, so th a t we can identify areas of potential technology transfer. This 
is clearly of great benefit in curriculum design, where m ajor economies can be made if 
lessons learnt in code design, for example, can be apphed to  writing user documentation.

5.5 A n alog ies

Learning to solve problems, and the use of experience in solving novel problems, both 
need to  make use of the transfer of knowledge from one domain to  another. This transfer 
can be called many things, including m etaphor, analogy or abstraction. In all of these 
we can express the process tha t is taking place in term s of a target domain (the domain 
of real interest), a source domain (wliicli is already understood to  some extent), and a 
matching system for building correspondences between the two. It is widely accepted 
th a t matching systems can operate on two levels, matching surface similarities, such as 
colour and size, or matching deep similarities, such as the relationships holding between 
attributes. These two dimensions can be used to  give the very rough categorisation of 
the various terms used to denote the process of transference shown in Figure 5.2 [Gen89, 
Page 207].

We will restrict attention primarily to  analogies, for our aim is to  discuss engineering, and 
we assume th a t the engineer wiU require access to  relational properties via deep structural 
mappings in order to reason about systems. Indeed, one of the signs of expertise in 
problem solving within a given domain is the ability to see problems from th a t domain 
in terms of deep structure [Ske82]. M etaphor and other devices might play a part in 
exploratory discourse in suggesting where to  look for this structure, or even in informative 
discourse in user manuals, but we will not consider these here.

Medin and Orthony [M089] discuss the problems th a t arise in m atching. In particular, 
they note th a t even surface matching is often a manifestation of deep structural prop
erties. They assert th a t we are usually only interested in matching properties th a t we 
perceive to  be bound into deeper structural relationships within the domains. We would 
not, for example, usually base an analogy between suitcases and tennis balls on the 
fact th a t both items have no ears. There is unlikely to be any deep structural relations 
involving the presence of ears in our perception of either object. We m ight, however, 
observe th a t both objects are capable of bouncing if dropped, or th a t they both enclose 
space in some way. The views we take wiU be driven by purpose [KT89, Page 76]. This
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Figure 5.2: Deep and Surface Structure Matching Space

creates a link between analogies and theories, for both are based upon coherence, pur
pose, and perceived structural views. Viewed procedurally, we can observe th a t the task 
of building a theory might well be facilitated by first observing some analogy between 
two domains, provided th a t the analogy is based on sufficiently deep structure. If we 
manage to see a problem in term s of some analogy, which is sufficiently deep for a good 
relational structure to be matched, then we may be able to carry across a partial theory 
presentation of aspects of the source domain so tha t it provides a partial presentation of 
aspects of the target domain. Simply seeing a m etaphor would not be sufficient.

This gives rise to a potential confusion, however, for we we now have both a state space 
and a source domain playing very similar roles. When we view something as an idealised 
system, why is this a theory rather than an analogy? If we represent the world as a 
relational structure of states, why are we not building an analogy with the third world 
object comprising the theory of relations? We are in grave danger of playing nominalist 
games here, for, as Anderson and Thompson observe, abstraction (which is what gives 
rise to our idealised system) is “an analogy in which the model is an abstract description 
rather than  a physical object” [AT89, Page 294]. If we want to  consider the algebra of 
sets as an abstract description, then thinking in terms of sets is abstraction, if we want to 
think of it as a third world object, then we are using analogy. The distinction is decidedly 
vague. In essence, both analogy and abstraction are instances of the same process: finding
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matcliings between a source and target domain. The im portant difference is th a t between 
analogy and m etaphor, which is based on the degree of deep structure.

We should note th a t this relationship between abstraction and analogy is by no means 
obvious. D ijkstra, for example, seems to  differentiate between the two term s in quite 
fundam ental ways, when he writes

One of [the] characteristics [of the middle ages] was th a t ‘reasoning by anal
ogy’ was ram pant; another characteristic was almost to ta l intellectual stag
nation, and we now see why the two went together.” [Dij89, Page 1399]

It seems unlikely th a t Dijkstra is suggesting th a t formalisation wiU lead to  inteUectual 
stagnation. He goes on to say, however,

“It ready helps to view a program as a formula” [Page 1409]

which seems very much like an appeal to  analogical reasoning. In fact, what Dijkstra is 
ready warning against is the use of unwarranted analogies in reasoning, but he fails to 
develop any sort of account as to  what constitutes an appropriate use of analogy, leaving 
the reader with the notion th a t formalisations are good, and ad other analogies are bad.

We can now see th a t viewing the world in term s of different analogies, or abstractions, 
wid give rise to  different theory presentations, both because different partial views wid 
be taken, and also because different law formulations are dkely. If we see the world in 
term s of algebras, for example, we wid abstract away from those facets of our problem 
which hinder this view, and present the theory in terms of laws of coexistence. If we 
see it in term s of Kahn Nets, however, we wid seek out processes and express the theory 
not primarily in term s of laws of consequence and coexistence about these processes, 
but laws of interaction between them. Thus there is a tension between our choice of 
specification style and our view of the world: VDM, CLEAR and CCS are not simply
different formadsms for expressing things, they carry with them  different analogies for
building the theory. Even individual formadsms can be used to  express different world 
views: Z, for example, can be used purely algebraicady, for there is no need to use the 
state-based conventions [ML91].

It is also possible, of course, to  see the world in terms of programmable von Neumann 
architectures. A true programming expert might wed see a problem directly in term s of 
a programming formadsm, constructing an analogy between the problem domain and a 
Pascal program, for example. Such a person might wed produce the program  as a first 
phenomenological theory presentation. This is only dkely, however, if the individual has 
experience of the type of problem being solved, and understands the theory of Pascal 
wed enough to spot the deep structure. We cannot let a  novice programmer get away 
with such a thing, for analogy, with its accompanying theory building, would be replaced 
by m etaphor, creating a matching only between surface similarities, and the programmer 
would be unable to  reason selfconsciously about the artifacts: a  requirement for engi
neering. Moreover, leaping straight to  the program renders the task  of refutation very
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difficult: we cannot use the mathematico-scientific approach, but we have to  test, and 
we have no contractual boundary other than  the deliverable itself upon which to  agree. 
In general, we suggest th a t a  safer approach is to  construct sequences of theories, based 
on analogies, and hence experience.

Some ways of seeing the world would appear to  have a special status, however, providing 
a common foundation for academic disciplines. Goethe, for example, describes such 
world views as follows:

“We call these primordial phenomena, because nothing appreciable by the 
senses lies beyond them , on the contrary, they are perfectly fit to  be con
sidered as a fixed point to  which we first ascend [in the process of finding 
what is fundamental], and from wliich we may, in like manner, descend to 
the commonest case of everyday experience.” [Goe78, Page 72]

DiSessa discusses the role of these entities, which she refers to  as ‘phenomenological prim
itives’ (p-prims), in the education of physics students. She observes th a t novices bring 
a rich environment of p-prims to  bear on problems, but th a t these are unstructured, 
and the student has no way of selecting suitable candidates for particular problems. In 
particular, inappropriate p-prims may dominate, causing difficulties in problem solving. 
These p-prims need not be complex theoretical entities, but are quite likely to be ex
pressed in terms of common-sense models [diS87]. The simplified models treated  in the 
physical sciences are obvious candidates for useful p-prims. As Trusted has noted, “the 
sacrifice of comprehensiveness to  comprehensibility is seen in the appeal to ideal models 
which feature in many scientific theories” [Tru87, Page 51].

We can also note here th a t many of the analogies constructed in software design are 
pictorial. Despite their widespread use, not only in Software Engineering, very little has 
been w ritten about how this sort of analogy works. As Gibson notes

“Nothing even approximating a science of depiction exists. W hat artists, 
critics and philosophers of art have to say about pictures has little in common 
with what photographers, opticists and geometers have to say about them.
They do not seem to  be talking about the same topic. No one seems to know 
what a  picture «s.” [Gib79, Page 5]

A num ber of different notions of what a  picture is have been proposed. At one extreme 
is the idea th a t pictures are just symbols, and like any language we have to learn their 
meaning for “no degree of resemblance is sufficient to establish the requisite relationship 
of reference. Nor is resemblance necessary for reference; almost anything may stand for 
anything else” [Goo76, Page 5]. This notion is clearly inadequate, for if pictures were just 
symbols then we would have to learn their meaning, and if presented with a  picture we 
had not seen before, we would not be able to interpret it. There are aspects of pictures 
th a t do seem to conform to this idea, however, such as the lines drawn after a  cartoon 
figure to  denote motion. This is a  convention tha t we learn through context.
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Another common notion is th a t pictures have meaning by virtue of physical resemblance 
to  the objects they depict. Pictures only represent objects as seen from particular view
points, however, and they will only be recognised if the viewer can relate to  the given 
perspective. It is difficult to  reconcile this idea with the use of diagrams in Software 
Engineering, for we do not usually think of “seeing” a computer system. We might argue 
th a t systems have a form, and hence the diagram is being used to  portray  structural 
similarity. This raises a  problem with the use of diagrams, such as dataflow diagrams, 
for capturing requirements, for if we believe th a t these should express “w hat” not “how” , 
what form is the diagram depicting? One possible answer is th a t we are supposed to view 
the diagram as giving the form of some system th a t is analogous to the intended system, 
but th a t we are not m eant to  transfer the structural information inherent in the diagram 
over to  the required system. This does not appear to be the case, however, because most 
uses of dataflow diagrams, and similar techniques, intentionally carry over the structural 
information into the design phases of the development process. This leads us to  conclude 
th a t the decision to  use a diagrammatic technique carries with it the commitment to 
accept the structural information it conveys.

An alternative view would be to accept th a t such diagrams are purely symbolic. In tliis 
case we need to learn what each symbol means, and what the juxtaposition of symbols 
means. We may be able to  consider the diagrams as formal languages, and to  give them  
a formal semantics in terms of our cultural bedrock. This view is commonly adopted 
of Petri nets and finite s ta te  machine representations. Many of the diagrams used in 
Software Engineering, however, are not described in this way. If viewed as symbolic 
languages, they have no well-defined semantics. Users of these diagramm atic techniques 
are free to  interpret pictures in different ways. This renders them  useless for the purposes 
of providing theories th a t are inter-sub jectively testable, however, for we cannot teU what 
interpretations any given diagram is being given. Moreover, a frequently cited advantage 
of such diagrams is th a t customers find them  easy to understand, so they form a good 
basis for contractual agreements. If customers find them  easier to  understand it is almost 
certainly because they already have conventional meanings for shapes such as boxes (to 
hold things together), and arrows (to move things about). The contract wiU only be 
sensible if the engineer takes the trouble to ensure that all parties to the contract are 
using the same interpretations.

These discussions lead us to  conclude th a t the possibility of specifying the “w hat” without 
the “how” needs to be questioned. In seeking to present a theory of the “w hat” , the 
phenomenological theory, we wiU take particular views of the world. Is it possible to 
assert th a t the views we take a t the outset will never percolate down through our design 
to  influence the “how” ? This seems unlikely. If we present a specification in term s 
of dataflow, for example, it would take vast leaps of the imagination to  throw away 
the underlying analogy with a state-based architecture and produce a Prolog program; 
similarly if we produce a process oriented view using Kahn nets expressed in CCS we 
are unlikely to construct monolithic Fortran. The choice of view, if we are able make it 
selfconsciously, is one of the first design decisions. The real issue is th a t the purpose of
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tlie theory at this stage is scientific, so we need to ensure th a t it is fit for this purpose, 
and the introduction of implementation specific detail has too often been observed to 
m itigate against this. The deep structure of a  typical procedural program , for example, 
is notoriously convoluted, and does not usually lend itself to  the task of generalised 
deductions suitable for refutation.

We should observe th a t ideally we would like the choice of views taken to  be a selfcon
scious decision, for then the engineer maintains responsibility for the design. In practice, 
however, such insistence leads to  an infinite regression, for this choice wiU itself involve 
views. Instead we wiU insist th a t the engineer is aware of the problems th a t such choices 
can pose, and takes action to  ensure th a t these problems are dealt with safely. Our 
proof obligations, for example, are manifestations of this practice. We will return  to  this 
question in Chapter Seven.

5.6 Sum m ary

In this chapter we have briefly reviewed the notion of “theory” , and rapidly refined it 
to the semantic conception. We have discussed some of the principles underlying theory 
presentations, and looked at the rôle of analogies in finding suitable presentations. W ith 
the benefit of tliis discussion, we can now refine our model of system design.

Our phenomenological theory building activity involves agreeing with the customer both 
an idealisation of the problem, giving rise to  a sta te  space, and also a set of partial theory 
presentations governing the behaviour of idealised systems, namely those of interest to 
the customer. The design task  can then be viewed as the activity of changing the state 
space representation, and also the the theory presentation, so th a t it captures the problem 
in term s of structures and transitions available in some target virtual machine, such as 
a  Pascal engine. These changes may be seen as refinements, or as reconstructions with 
verification conditions. The phenomenological theory presentations m ust remain partial 
presentations of the resulting theory.

We should stress tha t a number of very im portant problem areas have been identified in 
this chapter, in particular, the problem of imposing structure onto both  the state  space 
and the theory presentation. Resolving these problems, however, is not considered part 
of this research, for we cannot expect the curriculum designer to  solve all the problems 
of Software Engineering en passant. We can expect the teacher to  be aware of these 
problems, however, for one of the tasks of teaching is to help the student navigate around 
the learning experience, and identification of potential hazard areas is certainly part of 
this task, as is the indication of where ideas can be carried across from one domain to 
another. Like the engineer, the teacher m ust take responsibility for tliis navigation task 
until the student is sufficiently weU trained.
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C h a p ter  6

M ethods, M adness or M êlée?
“Do all the good you can, by all the means you can, in all the ways you can, 
in all the places you can, at all the time you can, to all the people you can, 
as long as ever you can”

John Wesley

One of the most frequently debated topics in Software Engineering is the rôle and merits 
of “m ethods” for software development. Such debates are not only common, but they 
are frequently acrimonious. One reason for this is th a t much of the discussion rests on 
dogma, but acknowledging dogmatic views is unfashionable in western scientific culture, 
so this is often hidden behind a facade of rational argum ent, usually based on anecdotal 
evidence. Another reason for the acrimony is th a t the concept of “m ethod” is a  complex 
one, and the term  has at least four common uses within Software Engineering. Many 
of the debates are really just confusions of the uses of the term . To compound m atters, 
however, many of the protagonists in the debates seem to have sought refuge in the term  
“methodology” , which, far from clarifying m atters, simply adds all the possible uses of 
“theory” to  those of “m ethod” . Clarification of the idea of a  m ethod is essential for our 
pedagogical purposes, for every scheme teaching Software Engineering teaches methods 
in some form or another.

In one sense, we have already been discussing methods, for our model of software devel
opment suggests a  number of procedures to accompany it, and indeed the model would be 
meaningless without the procedural interpretation the reader gives it. The case has been 
made elsewhere th a t a  proper treatm ent of m ethod should be carried out in conjunction 
with the treatm ent of representations, and the two should not be separated [L0 0 8 6 ]. We 
win not adopt this approach here, however, because our prim ary concern is to  explore 
existing notions of methods, and to try  and relate them to our proposed model.

The four uses of the term  “m ethod” th a t we are going to  explore are clearly not as 
separable as we are going to suggest in this discussion, otherwise acrimonious debate 
could be avoided. Most methods proposed for Software Engineering can be considered 
as fulfilling, or have been claimed to fulfill, all four uses to  some degree. We would 
argue, as we have done throughout this thesis, th a t simplification and abstraction are 
the only ways to  come to  term s with complex issues, however, and the re-introduction of 
more complex facets of the problem can wait until a simplified understanding has been
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achieved.

We will s ta rt by considering methods as providing well-defined plans, intended to govern 
aU the actions of engineers and lead to  the successful completion of a  project. Such 
methods will be prescriptive. Finding these methods, if they exist, would solve the soft
ware crisis. They would also render the engineer little more than a low-level technician, 
and solve our curriculum design problem by reducing it to the task of devising an appro
priate training course in the method. We wid argue th a t such a m ethod cannot exist. 
Moreover, proceeding as if it might leads to  undesirable consequences in our curriculum 
design th a t, far from resolving the problems of the discipline, exacerbate them.

Given th a t methods cannot be reliable plans for solving unknown problems, we will 
discuss their rôle as rationalisations of the process of problem solving. This is common 
practice both in the Philosophy of Science and also in science and technology itself, 
where results are presented as if they were the products of rational processes, governed 
by plans from the outset. It will be argued th a t rationalisation, as weU as providing 
a vehicle for historical record, can assist in the process of achieving quality in software 
design. A number of possible rationabsations for processes accompanying our model of 
system design wiU be discussed briefly.

Our third perspective on methods wiU view them  as constraints on the activities of 
engineers and scientists. These constraints may be justified for a number of reasons, 
including management of the process, making the engineer more accountable via visible 
milestones, and facilitating the cooperation of several engineers on one project.

Finally we wiU present the idea th a t methods are collections of useful tools available to  the 
engineer for solving localised problems, rather than ways of addressing the whole question 
of design. These tools may be algorithmic in nature, certain to  work if applied correctly, 
or heuristic, where no such guarantees are given. These tools include m athem atical 
notations with their associated analytical techniques, ways of viewing and representing 
the problem, heuristics for tackling specific situations, and a plethora of other techniques. 
The engineer has responsibility for selecting the tools and using them  safely.

6.1 M eth o d s as P lan s

The question we want to address here is whether or not it is possible to  have a method 
of system design th a t can be used for the solution of all possible problems. We might 
rephrase this in a  less prejudicial form as asking whether, for any given problem, we can 
always identify, at the outset, a  particular m ethod for solving th a t problem. These two 
formulations are equivalent, for the la tte r involves finding a procedure, or method, for 
identifying the particular methods, and the conjunction of this procedure together with 
all the individual methods comprises a  universal method. We will tackle the question 
in its first form. We should observe th a t there are classes of problem which are so well 
understood th a t methods for their solution do appear self-evident. Compiler writing for 
conventional procedural languages and traditional target architectures, for example, can

135



www.manaraa.com

be tackled in prescribed ways, using tools developed for the purpose. It is im portant 
to realise, however, th a t most problems of Software Engineering do not fall into such 
classes. Many problems may be seen as similar to the exemplars from the classes, such 
as sorting and merging type problems, after analysis has taken place, but no general 
m ethod exists by which this similarity can be detected, and no algorithmic formulation 
for the requisite analysis has yet been given.

It may seem self-evident th a t no such generalised m ethod can exist, bu t this view is not 
universally held. McCrory, for example, asserts tha t not only does such a m ethod exist, 
but th a t it is common to the whole of design.

“The design process follows a methodology similar to  th a t of the scientific 
method, although the design m ethod has not been so carefully defined or 
historically well established.” [McC74, page 161].

It seems likely th a t similar views can be a ttribu ted  to  many software engineers, who 
seem to have formed the view th a t their problems will disappear when the m ethod has 
been found. Unfortunately a similar view seems to  be held by some educators, who seem 
to believe th a t they owe it to their students to  teach the most complicated version of 
such a method currently used in industry, on the grounds th a t this is the closest we have 
come to finding the Holy Grail, and it wiU serve the students weU when the real thing is 
found.

Such a view is untenable. The scientific m ethod that McCrory appeals to simply does 
not exist. He seems to  have confused philosophers’ rationalisations of the activities of 
scientists with plans th a t scientists hold, and even then he seems to  have overlooked the 
vast num ber of such rationalisations th a t have been formulated for different purposes. 
In particular, he has confused science, as presented in scientific discourse, with science 
as an activity involving exploration and cooperation as weU as the presentation of final 
results. Williams puts this very well, when he writes

“ . . .  no paper is ever w ritten with its real, genuine, honest historical introduc
tion; because somewhere in in the middle of it would have to  be the statem ent 
‘at this point I had an idea’. Editors—and I am one myself—cannot accept 
this; it removes science from its austere pedestal and makes it into a  creative 
a rt—which of course it is, but we are not supposed to  say so in public.” 
[Wil64, page 54].

It is generally accepted th a t although there may be ways of rationalising the process 
of scientific justification, scientific discovery can never be a completely rational process. 
Feyerabend, who takes an adm ittedly extreme view, observes th a t

“.. .it is of course possible to  simplify the historical medium in which a sci
entist works by simplifying its main actors. The history of science, after all, 
consists not only of facts and conclusions drawn therefrom. It consists also of
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ideas, interpretations of facts, problems created by a clash of interpretations, 
actions of scientists, and so on.” [Fey70a, page 20]

Furthermore, he goes on to  say th a t it is possible to  simplify this sta te  of affairs by “brain
washing” individuals to accept “professional conscience” and “professional integrity” , and 
tha t

“An essential part of the training is the inhibition of intuition th a t might lead 
to  a blurring of boundaries [between science and other activities]. A person’s 
religion, for example, or his metaphysics, or his sense of humour must not 
have the slightest connection with his scientific activity. His imagination is 
restrained and even his language will cease to  be his own.”[Fey70a, page 20]

It is a  sobering thought th a t Hoare’s plea for professionalism and scientific attitudes may 
be interpreted in such an extreme OrweUian fashion. W hat Hoare doubtlessly intended 
as a plea for honesty and integrity could be interpreted as a call for the dehumanisation 
of science. This is significant, for it causes us to reflect th a t a  possible reaction to 
Hoare’s persuasive discourse is to  see it as an attem pt to s ta rt the brainwashing process: 
this might explain the violent reaction th a t many anti-formalists show when faced with 
suggestions th a t m athematics has a rôle to  play in system design.

This is a very im portant observation. It sets the scene for the discussion of methods 
as instrum ents of control, both in the form of limitations of action and of language. 
Moreover, it highlights the rôle of intuition and individual background in system design. 
Parnas and Clements have noted th a t software design is influenced by ideas th a t do not 
come from rational consideration of the problem, but “arise spontaneously from other 
sources” [P 085, page 83]. Naur goes further, when he states th a t intuition “is the basis 
on which aU activities involved in software development must build” [Nau85, page 60]. 
Both Parnas and Naur adm it, however, th a t intuition is fallible, and dangerously so 
because the immediacy of response makes it seem attractive and convenient. Naur goes 
on to  note th a t intuitive actions can themselves be viewed intuitively by the actor, giving 
rise to  a  self-conscious mode of proceeding, echoing Quine’s comment th a t “science is 
self-conscious common sense” [Qui60].

Naur also develops the argum ent th a t the inevitability of intuition in software design 
means th a t we should concentrate not on removing it, but on finding ways of detecting 
and correcting any errors introduced: this requires self-conscious design, albeit a self- 
consciousness still based on intuition. Moreover he endorses the theory building view 
put forward here when he writes

“the problem of high quality software development cannot be solved by rules 
and methods, which essentially assume th a t the programmer acts like a m a
chine for producing programs.

. . .  a view of software development th a t makes the application of rule-based 
methods and notations the basic issue is misguided. The deeper problem of
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software development is the program m er’s building of theories of the computer- 
based solutions.” [Nau85, page 78].

Acceptance of the theory building view, and rejection of the existence of algorithms for 
carrying out science, forces us to  reject the notion of an all-embracing software develop
ment method.

Parnas also notes th a t design will inevitably be beset by unforeseen problems, such as 
changes in requirements and technology, or the imposition of management decisions. We 
could, of course, still seek a m ethod capable of admitting change, such as the multiple 
feedback loops of the typical life-cycle. The actions to be taken in the face of such 
changes, however, wiU depend on so m any factors, only truly understood a t the time 
of the change, th a t it is impossible to  find a method capable of prescribing actions in 
a domain independent way[PC85j. Thus even if we do not accept the theory building 
view, we are forced to reject the notion of a prescriptive m ethod of design.

Rejection of this kind of method, however, leaves us bereft of any framework within 
which to discuss approaches to  a design task, unless we find an alternative explanation. 
We wiU adopt Suchman’s notion th a t behaviour should be seen as situated actions:

“The term  [“situated action”] underscores the view th a t every course of ac
tion depends in essential ways upon its m aterial and social circumstances.” 
[Suc87, page 50].

Under this view plans are not prescribed sets of actions, rather their purpose is

“to orient you in such a way th a t you can obtain the best possible position 
from which to  use those embodied skills on which, in the final analysis, your 
success depends” [Suc87, page 52]

It is precisely because the “embodied skills” of the typical computer are so limited, of 
course, th a t the software engineer needs to transform the theory underpinning a design 
into a  presentation in terms of a simple programming language.

Interpreted in the theory of situated actions, the rôle of methods is th a t of a  resource to 
orient the engineer at the outset of the process, and also to provide a frame of reference 
th a t the engineer can appeal to  when problems arise. The m ethod does not navigate you 
through the problem, but gives a  canonical form against which progress can be measured. 
There is no need, however, for such methods to be all embracing; the engineer can seek 
different frameworks as his or her perception of the problem changes,

6.2 M eth od s as R a tion a lisa tion s

Given th a t there cannot be a universal description of how the software design process 
is actually to  be carried out, we wiU now tu rn  our attention to  the m atter of finding
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rationalisations of the process. W hereas a  prescriptive m ethod has to  foresee all possible 
events, rationalisations are usually allowed the great benefit of imperfect memory or 
knowledge. We can select the “significant” features of individual designs and ignore all 
the others. This selection process is, of course, part of the rationalisation, bu t it is seldom 
stated explicitly. In seeking to  plan, absolutely, the actions of an engineer we need to 
foresee the possible consequences of an unsatisfactory lunch; in rationalising the process 
we can decide th a t the quality of canteen food has no relevance to the actions taken. If 
we view plans as controls, of course, we will establish ways of proceeding th a t attem pt 
to deny culinary factors a  rôle in the process.

W hy should we even attem pt rationalisation? One reason for seeking rational justifica
tion of engineering actions is cultural. Technology, because it involves so m any diverse 
factors, cannot form a logically closed system. W estern cultures, however, “feel the need 
for ordering their fields of knowledge so th a t they are subject to  conscious analysis and 
m anagement” [Deh8 6 , pages 110-111], and hence seeks closed, logical, rationalisations 
of actions. We will not pass judgement on such motivation, but we should note th a t 
many papers proposing rational design processes seem to accept this reason as sufficient. 
Readers of these papers who reject the cultural values placed on the closed logical struc
tures of science, or at least question their relevance to engineering, are perfectly entitled 
to  reject the papers as worthless. Many readers of Dijkstra and Hoare, unfortunately, 
a ttribu te  only this motivation for rationalisation to the authors, and hence reject the 
messages contained in the publications out of hand. No doubt, some of the “softer” lit
erature is disregraded, for equally dogmatic reasons, by the “formalists” , because it does 
not acknowledge the importance of closed, logical, structures. Thus im portant messages 
in both camps may be lost because of dogma.

Feyerabend argues th a t this association of rationalisation with closed systems is unfortu
nate, and the assumption th a t science, as the exemplar of valued practice in our academic 
culture, can be rationalised by such systems is untrue.

“M ature science unites two very different traditions which are often separate, 
the tradition of a pluralist philosophical criticism and a more practical (and 
less hum anitarian . . .  ) tradition which explores the potentialities of a given 
m aterial (of a theory; of a piece of m atter) without being deterred by the 
difficulties th a t may arise and without regard to alternative ways of thinking 
(and acting).” [Fey70b, page 212]

We should not confuse “being scientific” with conforming to just one aspect of a  rational
isation of science. We m ust beware of rationalising only one aspect of the software design 
process, but then proceeding as if we have finished the task, and also elevated the status 
of the discipline to th a t of a “science” . This is not to say, of course, th a t separation of 
concerns cannot be used, provided the limitations of the technique are acknowledged. 
Thus Hoare is perfectly entitled to assert th a t we can prove the correctness of programs, 
but we must take care to recognise th a t “prove” , “correctness” , and “program ” are being 
given meanings within some closed system of rationalisation.
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A second reason for rationalisation is to  increase understanding of the processes involved 
in software design. This will allow the discipline to advance by improving both practice 
and education. This increase in understanding does not come primarily from rationalisa
tions th a t everyone agrees with, however, but with those th a t cause discourse, to  clarify 
or dispute the views put forward. In particular, it is perfectly possible for one individual 
to propose several different rationalisations of some situation in the full knowledge th a t 
they are inconsistent. Feyerabend, for example, defends his right to support the ratio
nalisations of both Kuhn and Lakatos, even though there are fundam ental disagreements 
between them  th a t cannot logically be reconciled.

“Contrary arguments bring out the different features it [science] contains, 
they challenge us to  make a decision, they challenge us to  either accept this 
many-faced monster and be devoured by it, or else to  challenge it in accor
dance with our wishes.” [Fey70b, page 215]

We should note th a t this is also an excellent defence of exploratory discourse in science 
and design, where the individual may propose conflicting theories to  promote discussion 
and resolution and, by reflexivity, of this thesis.

Perhaps the most obvious candidate for a rationalisation of the software design process 
is the life cycle model. We shall argue, in the next section, th a t life cycles can serve a 
useful function as controlling mechanisms in software design, but how helpful are they 
as rationalisations? The answer seems to  be th a t they are of very limited use. Most life 
cycles say little beyond “before designing something you need to  think about what it is 
you are going to do, then you can do it. If the result turns out to  be flawed, redesign i t .”

The problems arise because life-cycles a ttem pt to  satisfy people’s need for closed rational
isations, but they propose models th a t no one can refute. Thus they seek scientific ideals 
but with pseudo-scientific methods. Pfieeger, for example, proposes a  life cycle th a t com
prises a  fully connected graph with nine nodes. These nodes are labelled with term s such 
as “requirements analysis and definition” , “system design” , “program design” , “writing 
the program ” , and so on. AU we can glean from such models is th a t nebulous activities 
such as “writing the program ” can go on throughout the design process. How should such 
an observation be interpreted? Does it mean th a t “writing the program ” is part of “pro
gram design” , in which case should we conclude from the fuU connectivity of the graph, 
th a t aU nine activities are potentiaUy part of each other? Perhaps it means th a t there 
will be interleavings of “program design” with “writing the program ” , but this only tells 
us something if we can clearly distinguish between the terms. A fundam ental criticism 
of all life-cycle models is th a t they use jargon such as “design” , “specification” , and so 
on, but rely on the model to  imply what the term s mean. Such models will never lead to 
much improvement in understanding, for we can aU place our own interpretations on the 
term s, and either agree with the model, or quibble over the term s and accuse each other 
of nominalist games. Moreover, any m ajor criticisms of the model are usuaUy greeted by 
the addition of ex tra arrows to  the diagram, or adjectives to the term s, such as adding 
“functional” , “formal” , “requirements” or “system” to  the term  “specification” , none of
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which really help us to understand what is meant by a specification. Hence the claim 
th a t life cycles are usually accompanied by pseudo-scientific methods of defence.

Life cycles are not the only rationalisations of the development process. Another common 
rationalisation is the transform ational view, which sees the process as the transform ation 
of specifications into implementable specifications, or unimplement able programs into 
runnable programs. These rationalisations can be helpful, for they usually s ta rt by 
explaining what is being understood by a specification or program. The interpretation 
placed on the term s is often very limited, such as a categorical or algebraic view, but at 
least we know what we are disagreeing with when we take issue. Another rationalisation 
th a t is worthy of note is the notion of a program  as an existence proof of its specification, 
carried out in a constructive logic. Here the rationalisation can be construed as implying 
th a t the m ethod of design is similar to  the m ethod of proof construction in mathematics. 
Backhouse, for example, discusses how proof heuristics in M artin-Lof type theory can be 
viewed as heuristics for the design of procedural programming constructs [Bac90].

The real danger in adopting the life cycle model as a  rationalisation is not th a t it is of little 
value, th a t makes it a t worse a t distraction, but its universal appeal, in the  sense th a t 
no one can refute it. This has led to  its (naive) widespread adoption in structuring the 
curriculum. We will see in the next section th a t life cycles have a significant rôle to  play 
as controlling mechanisms in the design process, so if we adopt them  as rationalisations of 
the process as well we are likely to endorse the view th a t students should conform to these 
controlling mechanisms. Such a m ethod of teaching is implicitly accepting Durkheim’s 
thesis. Even if the courses within the designed curriculum adopt a  critical stance to  the 
life cycle, they are likely to  result in the students suggesting patches to  the  model rather 
than  the overthrow of the model itself, for they will work witliin the paradigm th a t the 
model establishes.

Given this danger with any rationalisation, perhaps we should seek more justification 
for attem pting rationalisation a t all. Parnas and Clements note th a t we do need such 
rationalisations of the design process, not only for the advancement of knowledge, and 
because they support the view th a t we are being scientific, but most im portantly because 
they help with the task of improving software quality. The reasons they give include:

♦ Rationalisation can act as plans for subsequent projects, providing valuable re
sources th a t the engineer can draw upon for initial orientation and also for handling 
problems when they arise.

♦ Rationalisations help us to  discuss the reasoning th a t leads to certain courses of 
action, thus protecting us to  some extent from ad hoc sequences of actions. This 
reasoning wiU be based upon idealisations, but it may still provide guidance.

♦ Rationalisations help the social process of design by contributing a standard, if 
idealised, procedure against which progress can be discussed. This allows the iden
tification of milestones, for example, and also the standardisation of discourse ac
tivities both  within the project and for the purposes of external monitoring.
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We might add to this list th a t rationalisations also serve to  support argum ents for “best 
practice” between projects. They m ight, for example, be used to  defend against charges 
of negligence after the event, or in tendering for contracts. If we accept the line of 
argum ent th a t rationalisation is of value, then we should tu rn  our a ttention to  possible 
rationalisations of design processes to  accompany our proposed model.

In our proposed model the engineer is faced with the task of producing a sequence of the
ories. An obvious place to s ta rt looking for rationalisations, therefore, is the Philosophy 
of Science. As the development of our model started  with Popper’s idea of refutation, 
we will also s ta rt our rationalisations from here. The simplest rationalisation we can 
give is to observe th a t once a theory has been refuted another one m ust be found. This 
naive refutationalism is not particularly helpful, however, for it offers no advice on what 
might constitute scientific progress, and no guiding heuristics beyond a process of trial 
and error. Also it does not accord with the facts for there is no doubt th a t some very 
successful science has been carried out with theories th a t had already been refuted. We 
would end up with little more than  a trace of science as a sequence of refuted, and un
connected, theories, and this clearly does not model the software design process as we 
would like it to  be, even if it comes close to  the process as it is sometimes observed.

A more sophisticated form of refutationalism is based on Popper’s notions th a t we want 
to make theories more general and more precise if science is to  be progressive. We can 
translate this into the term s of our software engineering model quite easily, and we end 
up with a limited form of refinement. If we draw a lattice similar to  th a t of figure 2.1, 
but using the conventional notation of program  correctness, and noting th a t we want 
to trea t the specification S  and the program P  as theories, we get the lattice shown in 
Figure 6.1.

{ x > l )  S { x > 2 }

{ x > 0 } S ' { x > 2 )  { x > l } S " { x  = 2}

{ x > 0 ) P { x  = 2}

Figure 6.1: Lattice of Refinement

The orderings in this lattice correspond to  the refinement ordering, and the diagram 
above reflects the laws [Mor90, page 8].

[post' post) = >  w : [pre,post] Ç lo : [pre,post']
[pre ==  ̂pre') = >  w : [pre, post] Q w : [pre', post]
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In this case additional precision was included to  make the program deterministic. Preci
sion may also be increased to  express the theory in term s of state  local to  the program, 
th a t is, rather than  in term s only of input and output components. This would give rise 
to  laws of refinement such as [Mor90, page 53]

if pre 3 c : T.pre' and c is a  fresh name not occuring in w^pre or post then 
w : [pre,posi] Ç con c : T .w  : [pre'^ post]

It seems likely th a t aH the other laws of refinement can be explained in term s of Popper’s 
notion of generalisation or making more precise.

This rationalisation gives a fair idea of what progress in our model might mean, but 
what of refutation itself? Suppose, whilst attem pting a refinement step, we detect an in
consistency, how should we react? Refutationalism, both naive and sophisticated, leaves 
us floundering here, for it says nothing more than  tha t the theory should be rejected. 
Software designers certainly do not behave in this fashion, rather they backtrack in quite 
subtle ways. Given a program th a t is inconsistent with the requirements, for example, 
the professional designer is not allowed the option of changing the requirements (although 
this is a  common reaction amongst those lacking professionalism, and also amongst many 
students). Similarly the designer does not usually reject the theory of the programming 
language, and replace it by one th a t removes the inconsistency, for this would require the 
re-implementation of compilers, and add a number of proof obligations. Both of these 
options m ust remain a possibility, of course, for the compiler and requirements have only 
been tested, and so may contain the inconsistency, but usually the designer wiU assume 
th a t a mistake has been made in producing an aspect of the theory under his or her 
control, and of immediate concern, and look for corrections in this region.

This idea fits in very neatly with Kuhn’s notion of paradigms [Kuli70b]. The engineer 
will accept certain theories and ways of proceeding, including the use of tools, as forming 
an irrefutable part of the paradigm, and work within the constraint they impose;

“. . .  when engaged in a  normal research program, the scientist m ust premise 
current theory as the rules of the game. His object is to solve a puzzle, 
preferably one at which others have failed, and current theory is required to 
define th a t puzzle and to guarantee th a t, given sufficient brilliance, it can be 
solved. Of course the practitioner of such an enterprise must often test the 
conjectured puzzle solution th a t his integrity suggests. But only his personal 
conjecture is tested. If it fails the test, only his ability not the corpus of 
current science is impugned.” [Kuh70a, page 70]

The rules assumed constitute a paradigm, and Kuhn distinguishes between normal sci
ence, th a t occurs within a particular paradigm, from periods of scientific revolution, 
when paradigms themselves are overthrown and replaced. The overthrow of a paradigm 
is not the direct result of a refutation, therefore, but a reflection of a  number of refuta
tions th a t have occurred in normal science which have not been resolved satisfactorily.
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It may also be a reflection of the inadequacy of a paradigm to permit certain puzzles to 
be attem pted at aU.

Clearly a situation can occur in software development where, for example, confldence 
in a  compiler is shaken, or when failure to  meet a  specification causes doubt as to the 
consistency of the specification itself. In general, however, the notion of a  paradigm  shift 
does not seem particularly appropriate to  the progress of individual projects. There is 
more to  paradigms than just the theories we adopt, however, for they also include ways 
of looking at the world, and when paradigm shifts occur

It is rather as if the professional community had been suddenly transported to 
another planet where familiar objects are seen in different fight and are joined 
by unfamiliar ones as well. . . .  we may want to say th a t after a revolution 
scientists are responding to  a  different world.” [Kuli79, page 110]

There is little doubt th a t such paradigm shifts do occur in Software Engineering, but the 
imposition of control mechanisms usually ensure tha t these occur only between projects 
and not during them. Luker, for example, says tha t

“I feel strongly th a t Computer Science is approaching a paradigm  shift. This 
would have staggering financial implications, and many hum an ones—some 
may be unable or unwilling to  adapt to  a  new paradigm. The champions of 
new practices are nearly always treated  with great suspicion as they shake the 
very foundations of a discipline. However, once the shift has been effected, 
it is regarded as a  natural step, and one which should have been taken much 
earlier.” [Luk89, page 255]

The introduction of Object Oriented Design, for example, with its associated tools, causes 
the designer to take a radically different view of the world [DIL90], Meyer notes tha t 
the move to  OOD represents a paradigm shift:

“For some programmers this change in viewpoint is as much of a  shock as 
may have been for some people, in another time, the idea of the earth  orbiting 
around the sun rather than  the reverse.” [Mey88, page 50]

Puzzles th a t could not be explained in procedural pseudocode, can now be addressed, 
such as the widespread re-use of code. A num ber of other ways of tackling system 
design can be seen to  form paradigms, including von Neumann based designs, functional 
programming, logic programming and expert systems. It might be argued th a t formal 
and informal approaches to  design, or even selfconscious and unselfconscious design, form 
examples of paradigms. A discussion of this, and its implications for curriculum design 
has been given elsewhere [Loo90c].

This raises a  question th a t is of significance for our task of curriculum design, namely to 
what extent should an engineer be responsible for the selection of paradigms? Clearly
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not every aspect of an adopted paradigm can be subjected to  reflection by its proponents; 
some of the world views, for example, will be tacit, and not available to  introspection, 
but should engineers be expected to  a ttem pt selfconscious selection of world views where 
possible? Shields, for example, dem onstrated nearly a decade ago th a t the paradigm 
underpinning SDL like systems of specification was unsound. This dem onstration has 
not led to  a rejection of the paradigm. We can only assume th a t this is because those 
working within the paradigm are not prepared to  question its foundations. This is very 
im portant, for it raises the question as to  whether we should teach within a paradigm, or 
attem pt to  introduce and compare many paradigms. N atural science teaching certainly 
does teach within paradigm, for it uses exemplars drawn from within one paradigm most 
of the time. Goldberg, for example, has noted th a t the response of British physicists 
to Einstein’s theory was conditioned by the fact that a “British theoretical physicist 
. . .w a s  trained to do ether mechanics; it is what he had to  learn, and it is what he 
knew best” [Gol70, Page 91]. Moreover, this education is assessed by knowledge of these 
exemplars, so a successful scientist at the outset of a career is one who works well within 
the given paradigm. We shall question this a ttitude further in the next chapter, where 
we will suggest th a t it is too early for within-paradigm teaching to  be used in Software 
Engineering, and alternatives have to  be found.

We should note in passing th a t Kuhn has often been dubbed a sociologist by other 
philosophers because of his introduction of paradigm shifts th a t depend on the social 
processes of acceptance, and therefore his rationalisations are not “methodologies in 
terms of which the historian reconstructs ‘internal history’ ” [Lak71, page 91]. They 
introduce extraneous factors over which the scientist has no control. Jones, however, 
rejects this on the grounds th a t the m ajor influence on this social behaviour is initial 
education, and this education should be considered part of science.

“Becoming educated is internal to the professional activity, even if it is, in
itself, non-rational” [Jon86, page 450].

K uhn’s notion of paradigms seems to  offer a good basis for rationalisation of the shifts 
th a t occur between projects, but it does not offer a great deal of enlightenment on the 
progress of individual projects, other than  the negative observation th a t such shifts would 
be potentially disastrous for projects within which they occurred, so we should consider 
controlling scientific activities to discourage th a t from happening. A more promising 
approach to  the rationalisation of a  single project seems to  be Lakatos’s research pro
grammes [Lak70]. Lakatos suggests th a t we can construe theory construction as being 
governed by two types of methodological rules: negative heuristics th a t tell us what 
routes to  avoid, and positive heuristics th a t tell us what paths to pursue.

Science, according to Lakatos, comprises research programmes governed by these two 
types of heuristic. In particular, each research programme has associated with it a hard 
core of theory, and the negative heuristic forbids us from trying to  a ttem pt to  refute 
it. We m ust protect this core by building a protective belt of auxiliary hypotheses if 
necessary. These auxiliary hypotheses will form the progressive part of the theory, and a

145



www.manaraa.com

“research programme is successful if it leads to  a progressive problem shift; unsuccessful 
if it leads to  a degenerating problem shift” [Lak70, page 133]. T hat is, if the auxiliary 
statem ents inhibit the solution of the problems the research programme sets out to 
solve, the programme will fail. W hen a programme ceases to  be successful, we need to 
abandon it and find another. Thus the hard core is not simply an adoption of Poincare’s 
conventionalism, for the theories it contains are still vulnerable to  rejection.

The positive heuristic of a  research programme is what drives us to  construct the pro
tective belt, for it encapsulates the purpose behind the programme, and the methods 
we might adopt to achieve this purpose. The scientist is setting out to  solve particular 
problems, and hence will need to  construct additional theoretical statem ents, but these 
win be directed more closely than  simply by generalisation and precision. Moreover, 
refutation wiU be aimed at these additional statem ents, rather than  the programme as a 
whole. Similarly, the engineer is seeking to  solve particular problems, not simply to  con
struct any artifact. The problem to be solved, together with restrictions imposed by the 
hard core, lead to the selection of the positive heuristic, which thus comprises “a partially 
articulated set of suggestions or hints on how to change, develop the ‘refutable variants’ 
of the research-programme, how to modify, sophisticate, the ‘refutable’ protective belt” 
[Lak70, page 135]. It is these “suggestions or hints” tha t wiU form the basis of our final 
use of “m ethod” discussed later in this chapter. This analysis suggests th a t standards, 
which if adopted wiU form part of the hard core of a  range of research programes, may 
have a pernicious rôle to  play, for they restrict the options open to the designer. Their 
use can be justified, however, if seen as part of a  larger research programme, whose aim 
is the unification of systems. The designer m ust make the value judgements necessary 
to decide between the heuristics of these two programmes, weighing up factors such as 
re-use of components against possible distortions th a t may ensue.

We can now discuss our theory building view of system design in the light of Lakatos’s 
research programmes. This can be done in a t least two ways. We can note, for example, 
th a t software engineers usually carry a hard core from project to project. This will 
comprise theories of target environments and also theories inherent in tools and methods 
adopted for representing world views. In this setting the hard core will only be rejected 
when it fails to solve problems, th a t is, when it fails to support current projects. The 
move from machine code to  high level languages, for example, can be seen as a  rejection 
of the hard core based on low level architecture, to be replaced by theories of more 
abstract machines. Similarly the use of flow charts as world views declined as they failed 
to support more complex design tasks. Once we have adopted a hard  core, however, 
we wiU then support it for the rest of the project. Here the software engineer faces 
similar problems in deciding when to  overthrow a hard core th a t the scientist faces. It 
is a  m atter of judgement as to when such a core has ceased to  be progressive. Under 
this interpretation, K uhn’s paradigms can be seen as research programmes th a t have 
obtained some kind of monopoly within a community^.

^Lakatos disputes this, claiming that the decision to reject a hard core is rational, being based on the 
notion of progress, whereas the overthrow of a paradigm is fundamentally irrational. This claim seems
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We can also consider an individual project as giving rise to  research programmes. In 
this case we might consider the phase of design up to the establishing of a contractual 
boundary with the customer as a  research programme in its own right. Once the contract 
has been established, a new research programme is established containing the contractual 
information in its hard core. This core, which will also contain world views and so on, 
m ust be protected. The negative heuristic, therefore, determines th a t, whatever else may 
happen, we m ust meet the customer’s requirements. The positive heuristic drives us to 
seek solutions to  the puzzle of how to do this with a  theory th a t can be autom ated, th a t 
is, to  extend the phenomenological theory to  include the state  of some real machine. Note 
th a t the specification of a  target environment as part of the contractual boundary now 
contributes to both the negative and positive heuristics. The theories surrounding this 
machine constitute part of the hard core, but the “suggestions or h ints” th a t comprise the 
engineers’ experience of the machine will contribute to the positive heuristic. W ith this 
interpretation, the decision to  overthrow a research programme during a project reflects 
either the engineer’s rejection of the methods and tools already chosen for the project, 
or both the customer and engineer agreeing to  a change of contract. We should note, 
however, th a t an experienced engineer will not base a research project on a hard core 
th a t is too volatile. In particular, not every detail of the customer’s requirements will 
necessarily be included in the core as specific statements: where the engineer anticipates 
changes occurring in the future, a  general statem ent will be included, and a specific 
instantiation added to  the protective belt. No self-respecting software engineer would 
base a design on a hard core th a t contained the specific rate  of V .A .T., for example, or 
on the custom er’s insistence th a t no invoices are issued with more than  six digits in the 
number.

One im portant distinction between refutationism and Lakatos’s research programmes is 
th a t the dialectic of the la tte r is no longer simply one of conjecture followed by refu
tation. We do not test aU of our theories, for example, rather we allow the positive 
heuristic to  drive our programme forward, relying on the judgement of the engineer to  
note progressive situations. In an extreme case, where we embrace a formal system of 
refinement in our hai'd core, we might allow the positive heuristic comprising refinement 
m ethods to  drive the design along, and not test the resulting theory a t aU. In general, 
however, testing of theories will be carried out at judicious points, but more to  solve 
local puzzles th a t to  refute the whole theory. Thus although Popper’s ideal of science is 
m aintained, the methods adopted are significantly different. We know, for example, tha t 
the theory of infinite stacks will be incompatible with th a t of any real, finite, machine 
used for implementation. Refuting a theory th a t contained interactions of the two would 
be pointless, for it is too simple. R ather we shelve the inconsistency, allowing the pos
itive heuristic of the programme to cause it to  progress until a sensible point has been 
reached for the introduction of finite stacks. Refutationalism, both naive and sophisti
cated, would require us to refute and reject the theory as soon as the inconsistency was 
noticed, and our scientific a ttitude would require us to notice it as soon as possible.

difRcuIt to support without a much firmer notion of “progress” than Lakatos ever provided.
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6.3 M eth o d s o f  C ontrol and C oord in ation

Software Engineering is usually considered to be primarily a social process, involving 
teams of individuals in group problem-solving activities. A third view of “m ethod” tha t 
we can take is as a controlling, or coordinating, influence on these activities. McCrory, 
for example, writes

“In addition to  being a controlling influence upon the design process, the 
design method^ also serves as a  communications medium. M anagement of
ten does not understand the steps through which a design programme must 
pass between its inception and its completion. . . . T h e  design m ethod can 
provide a ‘universal language’ understandable to both the designer and liis 
m anagement.” [McC74, Page 172]

This is a very complex issue, and a detailed study of the subject would take us into the 
realms of a t least management studies, social psychology and sociology, in addition to  a 
consideration of the ethical issues involved. We cannot avoid some consideration of the 
m atter, however, for the stance we take here wiU materially effect our curriculum design.

W hat does it mean when management claims to be using a software design method(ology)? 
There are a t least three possible interpretations th a t we might place on such a claim. 
F irst, it might mean th a t management has imposed a number of hoops for engineers to  
jump through in the course of every project. Such imposition is sometimes, erroneously, 
identified with quality control; as Voss has observed, quality control comes only with a 
quality culture, and the imposition of hoops does not fit well within such a culture [Vos90, 
Pagellb ]. These hoops may or may not be seen as supportive of the design process by the 
engineers involved, but this is irrelevant, for they must be jumped none the less. More
over, these hoops m ust be jumped in a pre defined order, and project costing makes the 
naive assumption (or definition) th a t when all the hoops have been successfully jumped, 
the project has been successfully completed. Rejection of the m ethod is not an option 
for the engineers concerned, for this decision will be taken by a higher authority, with 
due regard not so much for the ideals of engineering, but for those of corporate finance. 
In this scenario the engineer cannot assume responsibility for the fitness for purpose of 
the designed artifact: only management can claim this, and they may not feel inclined to 
do so. The engineer need only be concerned with the localised task of jumping through 
the hoops. Moreover, such a scenario has a  certain appeal to  the engineer as employee. 
Feyerabend has noted th a t similar phenomena have arisen in modern science, when he 
writes

“.. .late  20th-century science has given up all philosophical pretensions and 
has become a powerful business th a t shapes the m entality of its practitioners.
Good payment, good standing with the boss and the colleagues in their ‘un it’

^McCrory believes that a single design method exists.
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are the chief aims of these hum an ants who excel in the solution of tiny 
problems but who cannot make sense of anything transcending their domain 
of competence.” [Fey75, Page 188]

W hy has such a situation arisen, where people are prepared to  be treated  as “human 
an ts”? Most engineers are well educated and would like to  think of themselves as free 
thinkers. W hy would anyone want to  become just a  cog in a “software factory” [Tul87] 
or a  science machine? Feyerabend has a reason for this:

“ . . . i t  needs only a few well-placed phrases to  put the fear of Chaos into 
the most enlightened audience, and to  make them  yearn for simple rules and 
simple dogmas which they can follow without having to  reconsider m atters 
at every tu rn .” [Fey75, Page 181],

There are undoubtedly times when the complexity of the software development task is 
such th a t the individual flounders, and feels the need for help, but the imposition of 
sets of hoops is not the answer. W hat we must do is to structure our approach to each 
project, with due regard to  the problems and resources available, and be prepared to  take 
responsibility for these actions. This is of crucial importance for our curriculum design 
task, for a rejection of imposed methods per se radically alters our the problem. We no 
longer have the refuge of teaching a subset of common methods from within paradigm, 
but we m ust teach the students to select methods. This is not the easy option for it 
requires a  more reflective approach and, as Feyerabend notes

“I do And it a little astonishing to  see with what fervour students and other 
non-initiates cling to stale phrases and decrepit principles as if a situation in 
which they bear the full responsibility for every action and are the original 
cause for every regularity of the mind were quite unbearable to  them .” [Fey75,
Page 182]

Rejection of this approach to  methods, therefore, antagonises some industrialists, who 
cite the argument of chaos, some educators, who cite the producer-consumer model of 
education as an excuse for adopting the easy option, and many students, who are terrified 
of the realisation th a t in designing faulty software they might kill someone, and much 
prefer the responsibility to be shifted to  someone else. To complicate m atters, we cannot 
argue the case on purely rational grounds, for we cannot claim such an appropriate set 
of hoops does not exist, the counter will be made tha t we just have not found it yet. 
It is a  m atter of judgement, and, like the students, we are naturally unwilling to take 
responsibility for the resulting actions. It is much easier to  follow the trend in a fear of 
Chaos, seek support in the job advertisements for software engineers, cite the latest DTI 
initiatives, and avoid taking unpalatable decisions. Educationalist, being designers, may 
also try  to  avoid the loss of innocence by seeking refuge in styles. The discussions on 
curriculum design in the rest of this thesis, however, are predicated on rejection of this 
approach.
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The phrase “adoption of a  m ethod” might also mean, however, th a t a particular rational
isation of the process is being embraced. This is a  very different m atter, for it now means 
the hoops do not actually need to  be jumped through, but results m ust be presented as 
if they had been. In a  sense, this is dishonest, but only in the way th a t a  scientist is dis
honest when he writes up his experiments, or a  m athematician in presenting a polished 
proof.

There are many advantages of adopting such rationalisations, including uniformity of 
documentation, the identification of milestones, and the “scientific” facade it can offer 
the discipline. This rationalisation, like the hoop jumping, is usually manifest as a  series 
of discursive acts undertaken by the engineers. Rather than a single, final, rationalisation, 
the engineer wiU usually show rationalisation by the production of documents at various 
stages of the design. This is the true rôle of the life cycle. It identifies documents th a t 
engineers should produce to  rationalise the process. A typical life cycle does not constrain 
the engineer to  think only about requirements analysis until the requirements document 
has been produced, simply to  produce such a document predating the design documents. 
One of the hm itations of the typical life cycle, however, is th a t it tends to  emphasise 
informative discourse at the expense of exploratory or scientific discourse. The engineer 
is encouraged to document the “w hat” of the project, the “how” being simply “what 
could be done to  bring this about” , but not to  answer the “why” questions, such as 
“why this presentation of requirements was adopted” or “why this way of proceeding 
win bring about the desired consequences” . Moreover, the progress of a project tends 
to be judged solely by the stream  of documentation th a t is produced. Brown has noted 
th a t this need to  produce documentation may adversely effect the project:

“ .. .we suffered from an excess of design documentation literally driving out 
design proper. We never had time to  notice th a t there was a simple, elegant, 
answer to  the problem.” [Bro84, Pages 59-60]

Norcio and Chm ura have suggested th a t discourse between engineers may be a bet
ter indicator of design progress than  documentation produced for external consumption 
[NC86].

It is precisely to  redress this balance th a t the theory view has been proposed, for a  theory 
is informative, but it can also be used for exploration or as the basis for proofs. This 
rationalisation shows very clearly th a t we will need to teach students to  carry out all 
three types of reference discourse. Unfortunately, it is unclear how such a rationalisation 
would be adopted by management for the purposes of control and coordination. Perhaps 
a “negative heuristic” document is required, identifying the assumptions being made at 
the outset of the project, which will develop as the user requirements are added, and also 
a  “positive heuristic” document which details the ways in which progress towards the goal 
has been made. We might insist th a t the engineer uses particular presentation techniques 
for informative and scientific discourse, thus making VDM and dataflow diagrams, say, 
a project standard, or even insist th a t a tool for keeping track of this progress is used, 
but then assumptions accompanying these notations, tools and techniques would become
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part of the hard core. This would have the advantage of forcing management to  accept 
the consequences of imposing paradigms on the designers.

A third possibility is th a t managers claim to have adopted methods when they believe 
the engineers are using the methods as the basis for plans. In this case the method 
is used to  orient the project a t the outset, and to  fall back on during its course. The 
engineers wiU not feel bound to  the plan, however, and might reject it very early on if 
they are finding it of little use. In this case, m anagem ent’s commitment to  the m ethod is 
largely one of education: they have placed their engineers in a  position to  be able to  use 
the m ethod (otherwise claiming to  use the m ethod would be dishonest), but they are not 
claiming th a t the m ethod is being used in any continuing sense. This sense of “m ethod” 
allows the engineers to retain control of the project, but identifies a common point of 
departure. The method will stand or fall on its merits for each individual project.

There is a  complication, however, and th a t is the provision of tools support. Most tools 
are provided to  accompany certain methods, th a t is, they assume the engineer is following 
a  pre-defined plan, and the tools wiU become useful only if a  particular point in the plan 
is reached. Moreover, these tools usually capture much of the “w hat” information about 
a project, thereby dictating to  some extent the informative discourse th a t will take place 
in any rationalisation of the project. Once the informative discourse is determined, 
however, the scientific and exploratory discourse processes wiU be constrained to  fit in. 
Rather than  the exploration driving the process, the tools s ta rt to do so. This further 
confuses the slogan “specify the what before the how” , for now we can see th a t “how” 
we specify the “w hat” may be inherent from the outset as a driving force behind the 
design. Adopting data  flow as part of a  m ethod, for example, leads inexorably towards a 
procedural im plem entation. Once a project adopts a method as a  means of orientation, 
and surrounds this m ethod by an integrated toolset, the m ethod, via its tools, starts  to 
control the process, bringing with it all the dangers of a  management imposed method, 
but with the added confusion th a t it is unclear who retains responsibility for the design.

Concepts

Methods

Figure 6.2: Methods, Languages and Tools 

MitcheU presents the diagram shown in Figure 6.2, and asserts th a t it

“captures the fact th a t underlying chosen tools, methods and languages are 
a num ber of concepts which wiU vary from paradigm to  paradigm. . . .  [it also 
suggests that] we m ust be clear what concepts we are working with when we
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design tools, methods and languages.” [Mit88, Pages 8-9].

We should also note the converse, however, namely th a t selection of these things effec
tively locks us into a research program, or paradigm, by fixing the ways in which we 
view the world. If methods, languages and tools are forced upon us then we have little 
control over the world views we take. As Rapp has observed,

“Because of this chaiacteristic and far reaching interdependence, aU individ
ual phenomena are combined to  form a  comprehensive technological com
plex into which, it seems, the individual hum an being is helplessly drawn.” 
[Rap81, Page 48]

Gregory goes even further, suggesting th a t

“It is surely true of all tools, th a t by making some things easier they direct 
activity and thinking from things th a t are more difficult; but what is easy 
and what is difficult are partly set by the available tools, and so we are 
carried along by a sequence of largely arbitrary and sometimes unfortunate 
features of our technology, including our language. Human intelligence is very 
largely Artificial Intelligence, and even our hopes and fears (and our moral 
commitments, for they are set by possibilities of achievement) are largely set 
by existing technology.” [Gre84, Page 51]

6.4 M eth o d s as T ools

The final sense of the term  “m ethod” we want to consider is one commonly encountered 
in both engineering and mathematics. Asimow observes tha t

“The designer encounters a  host of problems which are peculiar to  the process 
of design. . . .  We will speak of the analytical techniques which cope with these 
problems as the general methods and tools of design.” [Asi62, page 3]

In addition to  these methods of design, there are also methods associated with particular 
domains of knowledge, such as m athem atical methods, and also methods from the prob
lem domain such as double-entry book keeping. M ethods, in this sense, are localised to 
solving well-identified problems within particular disciplines. They are useful tricks: as 
Polya and Szego have said,

“An idea which can be used only once is a  trick. If you use it more than once 
it becomes a m ethod” Cited in [ArbQO, page 499]

It could be argued th a t design methods in the large, such as SSADM, are attem pts to  
find such localised methods for the discipline of design, but they are clearly different in
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scale from the methods a m athem atician uses when solving an equation. Moreover, the 
methods we are going to consider here are usually used by one individual, rather than 
attem pting to  prescribe actions for team s, and are all underpinned by bodies of theory 
where possible. Compiler writers, for example, use methods of parser generation based 
on the theory of LALR parsing. M athematicians solving equations use the appropriate 
theory for the equation encountered. There is no theory of design, however, so there 
can be no general m ethod of design in the sense of m ethod used here, just as there 
can be no method of m athematics until a  unified theory of m athem atics is found. It is 
this use of “m ethod” th a t gives rise to  traditional “methods courses” in engineering and 
m athem atics, th a t are differ from the methods courses in software engineering.

Consider the problem of solving the quadratic equation

(æ +  12)(14 -  x) =  25

A competent m athem atician might solve this as follows:

æ +  12 — 25 and x — 13 or
14 — æ =  25 and x =  —11

This m ethod (which may surprise less mathematically experienced readers) is based on 
knowledge of quadratic equations. It hinges on the fact th a t any equation of the form 
[x +  u)(u — æ) =  c, where m +  u =  c -f 1, can be solved in the above fashion. This shows 
very clearly th a t methods are intrinsically linked to knowledge. Since theories are ways 
of expressing knowledge, we can see ample support for R app’s statem ent th a t “nothing 
..  .is more practical than a good theory” [RapSl, page 37]. The claim th a t engineers are 
practitioners who do not need theories is untenable, for even if we release them  from proof 
obligations, their very methods are based upon theories. Suggestions th a t computing is 
a “practical” subject, and so “hands on experience” is more im portant than  theory are 
equally ludicrous. The cause of the problem seems to be a m isunderstanding of the 
statem ent th a t we can learn from our mistakes. Popper claims this as the theme for his 
book Conjectures and Refutations [Pop63], but what does it mean? Kuhn makes the 
im portant observation tha t

“The individual can learn from his mistakes only because the group whose 
practice embodies these rules can isolate the individual’s failure in applying 
them ” [Kuh70a, page 11].

This is why we can teach some skills without imparting theory explicitly: the teacher 
uses theory in correcting actions The software engineer, however, needs to  be able to 
continue to  learn after formal education has been completed. It is the selfconscious 
aspect of design th a t allows this to happen: by continuously monitoring progress against 
a theoretical framework, the engineer can continue learning from mistakes. Individuals 
can construct their own theories to  support methods, using tests for refutations. It is 
equally ludicrous to suggest, however, th a t modern society can be supported by a learning
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process where every theory is re-learnt from refutations. Engineers m ust be able to  learn 
presented theories as weU as constructing their own, for these will be the basis for many 
of the positive heuristics they are to  use during the design process.

One complication here is th a t many engineers do not need to appeal directly to  fundamen
tal theory every time they want to use a  method. Methods are often neatly encapsulated 
in rule form, where all the engineer has to  do is m atch the problem to  an appropriate 
rule, and use it. M athematicians use this strategy, when they look up standard results 
in tables of integrals, for example. To use such a strategy safely, however, requires a 
grounding in theory. Although engineers may be excused the task of solving a partial 
differential equation from first principles by this approach, they m ust understand enough 
theory to  identify the equation for what it is, and to check th a t all the conditions for 
using the rule are m et. Moreover, they m ust possess a good system for classifying their 
methods if they are to  be able to store and find the appropriate rules. The software 
engineer, on the other hand, has very few such rules available, so there is currently no 
option but to  get to grips with the theory directly.

These methods wiU provide positive heuristics for our research program. The engineer, 
being faced with a  theory in a  particular form, and knowing the aims of the programme, 
will use the methods of the discipline to  make progress. In the early stages of the 
task, these heuristics will be techniques for interviewing customers and users, methods 
of discharging consistency and completeness proof obligations for specifications, and so 
on. In later stages the heuristics wiU include those of refinement towards particular 
languages, known algorithms for sorting, and so on. We wiU not a ttem pt to  itemise the 
sorts of methods th a t software engineers should have at their disposal, for such a list will 
be subjective, and bound up in application domains and other such specifics. Rather we 
win consider what it means for the engineer to  have a method available.

One of the distinctions th a t is usually made between experts and novices in some domain 
is their ability to solve exemplar problems from that domain. It is no longer considered 
th a t this ability is simply a reflection of stages of development, as Piaget proposed. 
Recent research in psychology suggests th a t problem solving ability is linked to  the 
amount of knowledge the individual is able to  bring to  bear on the problem. This, in 
tu rn , is not simply a m atter of “having” the knowledge, but how of how this knowledge 
is encoded. This is of crucial importance for curriculum development, for it suggests 
th a t the initial encoding of presented information can determine whether or not th a t 
information is useful to an engineer in solving problems. It is surprising, therefore, th a t 
very little seems to have been said about this in the literature of software engineering 
education. We should note th a t “experience” and “expertise” are not necessarily linked. 
W hether or not experience leads to the development of expertise, and what governs the 
process, is little understood. Littm an et al. have shown, however, th a t there is “virtually 
no relationship between years of professional programming experience and successfully 
performing a [program] enhancement task” [LPLS86, page 95]. We should not assume, 
therefore, th a t “hands on” experience wiU necessarily develop expertise in our students. 
They did show a relationship, however, between successful program enhancement and
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the ways in which the original program was studied. Programmers who performed a 
system atic study of the program  had more success than those who sought information 
as they needed it. We can interpret this as another endorsement of the theory building 
approach to  software design.

Chase and Simon forged the link between recall and encoding of information with their 
studies of chess masters and novices [CS73]. They concluded th a t m asters encode mean
ingful chess boards in more sophisticated ways than novices. W hereas the novice uses 
proximity relations to  encode a board, the expert uses a number of techniques, including 
relationships between pieces th a t are relevant to the goals of the game, such as offen
sive and defensive scenarios. Chi and Glaser showed th a t physicists similarly classify 
problems in terms of significant structure, in this case using the underlying principles 
of the subject (such as the conservation of energy) rather than  the rules of the game, 
whereas students concentrated on surface similarities (such as the m ention of blocks on 
an inclined plane) [CG85]. They also showed th a t experts take longer to  classify the 
problems than the students do, presumably as a result of doing more work in uncovering 
the deeper structure they are seeking. This might explain why weaker students, when 
given a programming problem, often s ta rt work a t a terminal before the better students, 
for they can perform their superficial analysis of the problem more quickly. Gugerty and 
Olson, on the other hand, have observed th a t novice programmers study programs for 
longer before attem pting to find errors in them  than experts [G086]. One possible ex
planation for this apparent contradiction is th a t information can be presented to  people 
implicitly or explicitly. Implicit information requires the reader to  expend more effort 
in finding its structure. Both novices and experts might trea t programs as explicit in
formation for the purposes of debugging, consequently the experts’ familiarity with the 
language allows them  to complete the task more quickly. This interpretation accords 
with Bransford’s experiment th a t showed poor readers read documents containing im
plicit knowledge more quickly th a t good readers, failing to grasp the significance of what 
they are reading, but they read documents with exphcit knowledge more slowly [BS82]. 
He concluded similarly th a t better readers encode with a  deeper structure than poor 
readers, so spend longer seeking out implicit meaning.

Chi, Feltovich and Glaser found th a t the representation of a  problem has a significant 
impact on the solutions th a t wiU be found [CFG81]. This is not surprising, but it adds 
support to  the earlier statem ent th a t it is pointless insisting th a t specifications should 
be presented independently of implementation details. The choice of theory formulation 
language for our specification is part of the problem representation process, and hence is 
likely to influence the designs found. Rather than try  to live up to  such a slogan, perhaps 
we should recognise th a t the choice of specification style and notation will influence our 
design and make conscious choices of these in recognition of the fact th a t selfconscious 
design starts  with adoption of a  paradigm. As Hirschheim and Klein have noted,

“the identification of paradigm along with the set of philosophical assump
tions which each embraces provides a  new vehicle for investigating new the

155



www.manaraa.com

ories about the nature and purpose of information systems development.” 
[HK89, page 1214]

Another implication of this research on encoding is th a t students may well “know” some
thing, but be unable to apply it to  problems because of unsuitable encoding. M ayer’s re
search on learning computer programming, for example, suggests th a t students learn how 
to write and understand programs better if they are presented with a model within which 
to  encode their new knowledge [May75]. Furthermore, Mayer noted th a t using flowcharts 
as a model was less eflfective th a t a  more abstract (but still operational) model to  which 
the students could relate. This, he concluded, was because “the [flowchart] symbols 
themselves provided only a second layer of code (ie. translating statem ents to  arbitrary 
symbols) rather than an organising superstructure” [page 732]. This causes us to  ques
tion the wisdom of teaching information systems design using modelling techniques such 
as dataflow diagrams. The often cited benefit th a t they are a close representation of 
the problem, easily understood by the user, may be more of a hindrance to the learning 
process than an aid.

The importance of finding models for teaching th a t are more than  simply surface encod
ings seems param ount. For complicated encodings it may be worth seeking to  establish 
interm ediate models. Siegler has noted

“It may sometimes be more desirable to  teach towards an interm ediate in
structional goal than to  teach directly towards the final goal. . . .  It may be 
more effective to  address . . .  difficulties one at a time as they arise than  to  try  
to a tta in  the ultim ate instructional objective in one step.” [Sie86, page 180].

Tliis is of crucial importance, for it impinges directly on the debate as to whether we 
should be teaching “what industry wants” . The answer may not be a straight “yes” or 
“no” , but a “yes through the use of simplified models” . This undoubtedly seems obvious 
to teachers of subjects other than software engineering, but the much of the literature on 
whether we should teach Ada as a  first programming language shows th a t many teachers 
in our discipline have not learnt to separate the end from the means.

Perkins and M artin have carried out a study of novice programmers, and why they fail 
to solve problems th a t experts manage to  solve. They have concluded th a t it is not just 
a m atter of experts “having knowledge” th a t novices do not have. Rather, they suggest 
th a t novices may well have the required knowledge, but in too fragile a form for it to 
be used effectively [PM86]. They suggest th a t fragile knowledge can be categorised into 
four types.

P a r t ia l ly  M issin g  K n ow ledge: here some aspects of the knowledge are missing, leav
ing the novice with insufficient to solve the problem.

I n e r t  K n ow ledge: this is possessed, but cannot be retrieved on the cue of the problem. 
It is suggested th a t knowledge is inert as a  result of the encoding process: the way
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we learn something determines the circumstances under which we wiU be able to  
use it.

M isp laced  K n ow ledge: this occurs when knowledge is invoked th a t does not assist 
in solving the problem posed. This m ay be because missing or inert knowledge 
leaves the novice in despair, so misplaced knowledge is all there is left. Functional 
fixedness and the EinsteUung effect (the carrying over of solutions from problem 
to problem) are classic examples of misplacement. This can also occur as a  result 
of over-generalisation of a result or under-differentiation of a problem situation.

C o n g lo m e ra te d  K no w led g e : this is when two or more partial bits of knowledge are 
mistakenly joined. In a sense it is a  special form of misplacement. Perkins and 
M artin observed th a t this is commonplace in novice programmers, and they spec
ulate th a t it could be because novices are used to conversing with humans, and 
people are quite adept a t overcoming errors in discourse, and unravelling disparate 
trains of thought. The novice has not yet discovered th a t computers are not capa
ble of inferring the required program from fragments of code, bu t require the whole 
thing in a syntacticaUy correct form. Experts, however, have learnt the lesson tha t 
programs cannot be nearly right: they are either right or wrong.

In addition, Perkins and M artin also noted th a t the problem of fragile knowledge in 
novices is exacerbated by a lack of general problem solving strategies th a t would help 
them  to overcome these limitations. The strategies they lacked were often very basic, 
including techniques such as re-expressing the problem in alternative forms.

6.5 Sum m ary

In this chapter we have explored four uses of the term  “m ethod” . We have also devel
oped the methodological aspects of our model through the use of positive and negative 
heuristics, and the idea of research programmes. In particular, we have drawn attention 
to  the limitations of life cycle approaches to  methods, and also questioned the rôle of 
design “methodologies” such as SSADM. We have explored what it means for someone 
to have a method for solving a problem, and briefly discussed some of the distinctions 
between experts and novices in their use of methods.
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C h a p ter  7

Personal C onstruct T heory
“The educational dogma seems to be that everything is fine as long as the 
student does not notice that he is learning something really new: more often 
than not, the student’s impression is indeed correct”

Edsgar Dijkstra

We have now completed onr analysis of Software Engineering design, and arrived at a 
model around which the technical aspects of our curriculum could be constructed. Pro
duction of this model is only one aspect of the task, however, for a  curriculum comprises 
more than just technical content. We have hinted at this idea already, by stressing the 
selfconscious a ttitude necessary for modern engineering design. Now it is tim e to  make 
this explicit by taking a stance on how people wiU h t into our curriculum. This means we 
need to  add to our discussion some consideration of teaching and learning theory at the 
very least. In fact, we have also rather neglected the question of how people construct, 
rather than  present, their theories. As theory building and learning are similar, if not 
identical, concerns, we will allow our discussion to  serve a dual purpose.

Using the discussion for this dual purpose, however, presents us with a difficulty of 
discourse structure, for the discussion of how people construct theories when designing 
systems would proceed rather differently from the discussion of how they do so in an 
educational setting. The approach we wiU adopt, therefore, is to  provide a largely neutral 
presentation of a theory which is pertinent to  both tasks, but we will leave the task of 
applying this theory to  our model up to  the reader. This is not because it is particularly 
hard to  do, or because the author is too lazy to undertake the task, but simply because 
we have reached a place in the text where the reader has to take a more active part in 
the process. Moreover, this is a reflexive application of the theory we will present, so it 
is also a natural thing to do. Stringer expresses this as follows:

“The goals of literary work is to make the reader no longer a consumer, but 
a producer of the text. . . .  Constructive Alternativism is a  cunning built-in 
device of personal construct psychology to prevent its own texts being closed 
in a  final definition. Seen reflexively, it turns reading into writing. M an-the 
scientist cannot help but (re)-write The Psychology o f Personal Constructs as 
she seeks to make sense of M an’s attem pt to  make sense of the word.” [Str85,
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pages 212-213]

We hope th a t this wiU make more sense as Personal Construct Theory is introduced in 
the following section.

In addition to discussing the people-related aspects of curriculum design, we should also 
discuss education in the wider context, by outlining the philosophical stance we are taking 
on education itself. In practice, however, most philosophies of education are intrinsically 
linked to  the ways in which we view the subject and the people being taught, so rather 
than  separate this out as an additional concern we will trea t it implicitly, as indeed we 
have already been doing.

Although we are not going to consider our philosophy separately, a brief overview will 
help to  set the scene for what follows. The philosophy of education we have adopted as 
our starting point is one of transformationalism. Students are no longer to  be considered 
as em pty vessels to be filled with learning, but as selfconscious people who are to  be 
helped to  grow in ways they determine, and in particular, who are to  be helped to  learn 
to learn. The job of the teacher is to  aid in this process of learning, not to fill a vessel like 
a  petrol pump attendant. Slaughter [Sla89] suggests th a t the equating of education with 
the im parting of second-hand “knowledge” , which is actually little more than d a ta  when 
it is received, is potentially disastrous for the modern world. For society, the application 
of this received data, in the absence of true knowledge and wisdom, “can lead to world 
destroying technologies” . For the individual, there is “a systematic frustration of the wiU 
to meaning” ; people no longer have a personal understanding of the world about them. 
He also notes th a t the sta te  of affairs where education is viewed in this way has been 
perpetuated by “short-termism ” :

“The N ew tonian/Cartesian synthesis constructed a way of looking at the 
world which perm itted later generations to  mistakenly believe th a t they were 
‘masters of na tu re’, separate from, or above, natural processes. We are learn
ing the hard way th a t this is simply not true. But instead of looking at 
what this implies for the future, our economic, political, and educational 
systems remain caught up in the business of reproducing an obsolete past. 
Short-termism is not just jargon for a concept applicable to  business and 
investment; it penetrates our public and private lives too.” [Sla89, page 256]

This philosophy sits upon Schumacher’s Levels of Being: mineral—existence, plant—life, 
animal—consciousness, hum an—self-awareness: he notes th a t

The most im portant insight th a t foUows from the four great Levels of Being [is 
that] at the level of m an there is no discernible limit or ceiling; [self-awareness 
is] a  power of unlimited potential” [Sch77, page 48]

Slaughter adds to this by saying
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“It is this [higher consciousness] (rather than  new technology per se) which 
leads on to the new hum an and cultural possibilities.” [Sla89, page 267]

If we accept this philosophy, a shift is necessary from the content-driven perception of 
curriculum currently prevalent in most higher education establishments, towards experi
ential learning, reflexive modes, and meta-level frameworks of meaning. We wlU consider 
this further in section 7.2, where it can be discussed in the light of our theory of learning. 
First, however, we m ust develop such a theory. We have selected Kelly’s Personal Con
struct Theory, as this is widely accepted as an excellent basis for the emerging study of 
student-centred learning, which flts very weU with our ideas of self conscious design and 
individual responsibility. Harri-Augstein expresses this perfectly:

“It was through Kelly’s craft th a t a  breakthrough wa^ achieved into a hu
manistic technology th a t allows meaning to  emerge in individual term s and 
yet retain some systematic form.” [HA85, page 61]

7.1 O u tlin e  o f  th e  T h eory

Kelly’s Personal Construct Theory (PC T ), although nearly 40 years old, is still considered 
radical [Fra88]. It is a  complete psychology, with explicit structure which we will retain in 
our presentation. The similarities between our model of system design and PC T should 
become apparent as we proceed, but to  to  aid orientation, we will s ta rt by giving an 
outline of the fundam ental similarities, leaving the reader to  construe other similarities 
and points of contact for his or her self. This, as will become apparent, is a reflexive use of 
PC T  itself. We would also argue, th a t such a presentation is of more use to  the curriculum 
designer than a catalogue of points on which the author has noted similarities. Moreover, 
we wiU not go into details of how the ideas presented would be applied to  practicalities, 
such as deciding upon content or teaching method, for these details would involve us in 
far too m any auxiliary discussions to  establish context, and are properly the concern of 
each individual teacher and curriculum designer. The next chapter, however, provides 
an overview of some designs th a t have been produced in the light of this analysis.

PC T  is an anticipatory, rather than  reactive, psychology. Consequently it flts in very 
well with Popper’s philosophy of science, based upon conjectures and refutations. Both 
the person and the scientist are seen as proactive, rather than  active only if provoked by 
stimuli. This similarity has ben noted and extended by Mancini, who writes:

“[Kelly] represents for psychology what Popper represents for epistemology; 
tha t is, the a ttem pt to reconcile constructions to  the possibility of knowing 
the ‘real’ world, and improving such knowledge, on a firm basis.” [MS88, 
page 69]

As we shall see, the central themes of PC T  are very similar to  those of our model of 
system development, and also to those of our (briefly sketched) philosophy of education.
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selfcoiisciousness plays a  key rôle in all three, as does the individual’s construction of 
theories (or construct systems) and their validation against experience.

PC T  is based on constructive alternativism, a  philosophy where our constructions of 
the world are subject to  revision and replacement, and there are always alternative 
constructs open to  us. These constructs, however, may differ in their effectiveness in 
allowing us to predict and control events in our world. They also allow us to  do away 
with inductive reasoning as a separate device, for our predictions about the world can 
be seen as deductive, based on currently held constructs. Like Kelly, we will leave aside 
the bootstrapping task of obtaining the first construct.

PC T is a  fully articulated theory, comprising a fundam ental postulate and eleven corol
laries. These corollaries are not simply deductions from the postulate, bu t amplifications 
of it th a t serve to  explain the central ideas behind the theory. In addition to  the theory 
itself, PC T  is also closely associated with a methodology of research based on repertory 
grid analysis. Indeed, the association is so close th a t FranseUa refers to  grid analysis 
as the “security blanket” of personal construct theorists, allowing them  to retain the 
quantitative aspects necessary to  be “respectable” psychologists, whilst accepting a rad
ical theory” [Fra88, page 30]. We will break with tradition here and utilise the theory 
without reference to  grid analysis.

Fundam ental P ostu late

A  person’s processes are psychologically channellised by the ways in which
they anticipate events.

In PC T a person is a fundam ental unit, rather than  various collections of processes such 
as cognition, perception and memory, which are the objects of concern in more traditional 
psychology. Kelly takes the view of “person-as-scientist” , and stresses the individuality 
of the whole person. This allows us to  consider theory building and selfconsciousness as 
primary, which is very difficult to achieve if we remain in the realm of traditional psy
chology. Although we might construct a  notion of selfconsciousness in social psychology, 
for example, this would not be immediately reconcilable with a  similar notion we might 
build in cognitive psychology. The holistic view of the person is the m ajor distinguishing 
feature of PC T, and should not be forgotten. It does, however, cause some m ajor prob
lems of presentation, for the theory is highly reflexive and is, therefore, whatever you 
construe it to be. In particular, the only definition we can give for “events” is th a t they 
arise as the result of the individual choosing to  “chop up time into manageable lengths” 
[Kel55, page 52]. Thus an event for Tom may comprise several for Dick, or be considered 
only part of one by Harry.

The person-as-scientist view also suggests th a t we could try  to  apply some of our discus
sions of science to  the theory. Horley, for example, suggests th a t we could see a person’s 
endeavours not only in terms of events, but as programmes of events [Hor88]: these show 
a clear similarity with Lakatos’s research programmes. McWilliams goes further than  the
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person-as-scientist view, when he argues th a t we should really construe PC T  as advo
cating the person-as-anarchist. This is a  natural development of following Feyerabend’s 
view th a t science is broader than  just the rationalist western traditions usually assumed. 
It may seem th a t such a move would be nihilistic; McWilliams argues this is not the 
case, for

“as personal consciousness evolves, a  natural tendency of the person is to 
attem pt to  discover the patterns of nature and live in harm ony with them. 
Anarchist philosophy suggests th a t when this principle is followed, and con
structs are revised to correspond more closely to events, hum an, social con
duct win naturally be ‘m oral’ and cooperative. In contrast, when construing 
fails to adapt to  the nature of events, conflict and ‘imm oral’ behaviour to
wards others, seen as hostility, occurs.” [McW88, pages 17-18]

Hints a t this idea of anarchy can be found in the heuristics accompanying such tech
niques as brainstorming [Osb63] and synectics [Gordlj. We should beware of attributing 
too much to  such techniques, however, particularly the increased flow of ideas th a t is 
sometimes claimed. Evidence suggests th a t although n people in a group produce more 
ideas in m  minutes than a person working alone, they produce signiflcantly fewer ideas 
than  n people working individually. The benefits of group creation seems to  come in the 
evaluation and development of ideas, rather than  the initial insights [LT73].

This notion of “hostility” raised above will be considered further as the theory is devel
oped in more detail, but we will not pursue the idea of person-as-anarchist. Although, 
in retrospect, it might be interesting to  replace software engineering as theory building 
with software engineering as anarchy, we will heed B urkhardt’s warning:

“If innovation is not close to  the familiar, few people will buy it; if it is too 
close, why bother to  develop it.” [Bur89, page 8]

and accept th a t our theory building view is probably as radical as we can go without 
risking rejection. Sufflce it to say th a t as our view of science changes, so too our construal 
of PC T  will change.

C onstruction Corollary

A person anticipates events by construing their replications.

Constructs for Kelly comprise both  similarities and contrasts, thus we cannot have the 
construct “looping program ” , but we may have the construct “looping program /non
looping program ” , although we will often present a construct in term s of one emergent 
pole, and allow the other to  remain implicit. Moreover, constructs need not be repre
sentable verbally, so it is perfectly possible for an individual to  have ways of construing 
the world th a t cannot be made public verbally. Subsequent corollaries expand on the 
idea of a  construct and relate the private nature of constructs to  social behaviour.
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The constructs we place on events are personal, and not simply a product of the events 
themselves. Bannister and FranseUa provide an excellent example of this when they 
discuss the problem of conditioning an individual to bhnk every time a prime number is 
shown on a screen [BF86, page 9]. Numbers are flashed up, and, if a  prime is shown, a 
jet of air is directed into the eye. After a  time, we might expect the subject to  anticipate 
events by blinking when a prime is shown, even if the jet of air is absent. This will 
only occur, however, if the subject construes the number as prime. If we attem pt to 
condition someone who is ignorant of the notion of primeness, we cannot succeed. We 
may succeed in inadvertently conditioning a reflex to  all odd numbers and two, if th a t 
is how the events are construed. People do not respond to  stimuli, but to  what they 
perceive them  to be. This is clearly a  very im portant message for those charged with 
the task of carrying out requirements analysis: is is not the requirements th a t we are 
analysing but the people making the responses.

This is crucial to  teachers, for if we see one aspect of education as conditioning students 
to  respond to events in particular ways, such as solving simple equations almost by re
flex, or invoking the idea of an invariant whenever a loop is presented, we need to  be 
aware th a t it is not enough simply to  present examples and leave the student to infer 
the connections. Much “bottom -up” teaching seems to proceed in tliis way: numerous 
examples are presented, and the student is left to  infer the greater picture. This can only 
happen, however, if the student’s construct system is already sufficiently developed for 
the perception replication to take place. Presenting twenty examples of proofs by con
tradiction win only help the students to anticipate solutions to  the twenty first problem, 
if their construct systems allow them  to  construe the “proof by contradiction-ness” of 
the past events, so th a t they can see the new problem as a  replication.

The replications referred to  are predicted events, but not in their ‘real’, concrete, form. 
Rather they are abstractions of sets of properties, th a t is, of other constructs. Thus if I 
construe a program as “badly w ritten” as opposed to  “well w ritten” , I may predict from 
this the event tha t it will be difficult to  modify. This difficulty need not have a concrete 
existence as a “thing” , however, but will manifest itself as a  num ber of properties th a t 
the event will have, such as a  num ber of errors made when modification is attem pted, 
the need to rewrite several regions of code when making a simple change, and so on.

Individuality  Corollary

Persons dijfer from  each other in their constructions o f events.

This is Kelly’s notion of individual differences. W hat makes people different is th a t they 
will live their lives differently, as a  result of seeing the world differently. Software engi
neers wiU produce different systems to  solve the same problem because they will see the 
world differently, tha t is, they will use different construct systems. If we want conformity, 
we m ust enable all engineers to  see the world through the same set of constructs. It is 
not enough to impose methods, of course, for these methods may themselves be viewed
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differently. If we can persuade each engineer to  see the world through a construct from 
which they anticipate being sacked if they do not use the m ethod in some algorithmic 
way, and if we can also persuade each engineer th a t they do not want to be sacked, then 
conformity may occur. It may also occur, of course, if they see other benefits from com
monality of behaviour. This is significant, for it shows th a t constructs do not need to  be 
believed to  be used: we can use a construct system because some higher level constructs 
tell us it is expedient to  do so. Of course, if we do this by encouraging students to  develop 
constructs such as “will lead to  being sacked” there may be implications. For example, 
it is likely th a t such a system wiU not be compatible with constructs such as “taking 
pride in work” . If we want them  to  consider using methods, then we m ust help them  
develop these higher order constructs so th a t they can make the choices. In many ways 
this highlights one of the most significant aspects of this research programme, for we are 
now faced with the question “can the theory building approach ever work, or wiU it just 
lead to  Babel”? Clearly one of the reasons th a t methods are seen as useful in software 
engineering is because they are construed as a way of avoiding the chaos th a t would 
ensue if engineers were allowed to  view the world as they wish. We will not attem pt 
to answer this question, but we will suggest th a t in a selfconscious culture, where the 
individual is sufficiently weU educated. Babel will only follow if the individuals desire it: 
after all, they are free to  control their world. If we do not trust engineers sufficiently to 
order their world, it is our construct system th a t is to  blame. If we do not educate them  
sufficiently for them  to  be able to  do so, it is our education system th a t is a t fault.

O rganisation Corollary

Each person characteristically evolves, for their convenience in anticipating 
events, a construction system embracing ordinal relationships between con
structs.

Constructs are built into liierarchies, such th a t each construct may have one or more 
subordinates and superordinates. This structuring can talte two distinct forms. First, 
the subordinate structure may run in the same dimension as its superordinate, thus if 
we have the construct “evaluative/descriptive” , then the construct “procedural program 
ming language/functional programming language” may be made subordinate, in such a 
way th a t procedural languages are seen as evaluative, whereas functional ones are seen as 
descriptive, as shown in Figure 7.1. Alternatively, we may see the subordinate construct

evaluative -----------------------------descriptive

procedural functional
programming programming
language language

Figure 7.1: Longitudinal Subordinate construct
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itself as evaluative or descriptive. In this case, the subordinate construct runs across its 
superordinate. Figure 7.2 shows two fragments of a construct system where the distinc
tion between procedural and functional languages is seen as first as evaluative, and then 
as descriptive.

descriptive
evaluative descriptive evaluative

functional
program m ing
language

proceduial
program m ing
language

functional
program m ing
language

procedural
program m ing
language

Figure 7.2: Transverse Subordinate Constructs

It is im portant to realise th a t construct systems change, and subsystems can be deliber
ately selected for particular purposes. Thus, for some purpose we may classify “Fortran” 
as a procedural language and be using a purely descriptive construct, on another occa
sion, however, we may be using the construct as a means of evaluation. This can cause 
considerable confusion to  students, particularly if they do not yet have sufficiently well 
developed construct systems to allow such flexibility.

Consider, for example, a student who construes “bad/good” as having a longitudinal 
subordinate “worth learning/not worth learning” . Such a  student will have considerable 
problems if told, by someone he or she trusts, th a t Fortran is a bad language but one th a t 
is worth learning. The simple option is to  re-construe Fortran as good, or to  refuse to  trust 
the teacher any more. In the longer term , however, and in the face of persistent events 
of this nature, the studen t’s construct system may be unable to  cope without structural 
reorganisation. The greatest challenge facing teachers is to  aid this reconstruction. In 
this sense, the teacher is a psycho-analyst: the analyst is helping “abnormal” people 
to develop more “normal” constructs, and in particular to  reach a  set of constructs 
where therapy is no longer required; the teacher is helping the “normal” student to 
develop more helpful constructs for coping with general and specific tasks, including the 
task of carrying on the development process itself. Construing the teacher’s rôle in this 
way is potentially quite threatening: it somehow seems much easier to  view ourselves as 
deliverers of information than  as analysts responsible for the development of our students. 
As we shall see when we move on to  consider social behaviour, however, the ways in which 
we construe our own rôle has implications for how the students will construe theirs.
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D ichotom y C orollary

A  person’s construction system is composed o f a finite number o f dichotomous 
constructs.

Ill PC T , Kelly has adopted the view th a t it is useful to  see constructs as demonstrably 
bipolar, with some objects and events being outside the range of particular constructs. 
Thus our construct “procedural programming language/ functional programming lan
guage” , for example, m ust have elements we can use to  illustrate each pole. In fact, 
Kelly insists on at least two a t one pole, to  show th a t there is at least some degree 
of sameness inherent in the construct, and one a t the opposite pole, to  dem onstrate 
contrast. Moreover, we are free to decide th a t the element “cabbages” or the element 
“Prolog” is outside the range of the construct if we wish. The range, like the construct 
itself, is personal.

Clearly there is a similarity between constructs and predicates (in a typed system), and 
between construct systems and formal systems, but constructs may be more complex 
than  just predicates. Kelly suggests three types of construct:

P re -e m p tiv e  c o n s tru c ts :  any event construed under such a construct may be pre
empted from being construed in any other way. These are “nothing b u t” constructs 
— “communism is nothing but dictatorship” , “SSADM is nothing but pictorial 
rubbish” , “formal methods are nothing but the saviour of Software Engineering” . 
Teaching students in such a way th a t they see the world in term s of such pre-emptive 
constructs limits their growth, for subsequent invalidation leaves the student with 
no option but rejection and m ajor reorganisation. Thus a student who comes 
to see a working program as nothing but a  good program will have considerable 
problems when faced with feedback saying tha t a working program  has failed to 
meet certain criteria of assessment. This student will be unable to  learn much 
about programming until a dram atic readjustm ent of the construct system has 
removed the pre-emptive construct.

C o n s te lla tio n  c o n s tru c ts :  these build links between constructs of the form “if it is an 
A then it is a  B” . Figure 7.3 shows a constellation where the construer sees aU pro
grams as deterministic and executable. Constellations are vital, but inappropriate 
ones lead to  stereotypes and blinkered vision.

P ro p o s it io n a l  c o n s tru c ts :  these are quite free. No subordinate or superordinate struc
tu re  is imposed upon them , they are free agents. They model predicates, rather 
than  laws, in our formal system. As we shall see, however, they need not form a 
consistent set,

As well as this classification, it is also useful to  consider constructs as permeable or im
permeable, depending on how constricted the range of application is seen to  be. Thus if 
we are only prepared to  consider traditional programmiung languages under our “proce
dural/functional” construct it is impermeable: if we are prepared to  see M artin-Lof type
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program -̂------------------------------------------    non-program

executable ■------------------------------  non-executable

deterministic >------------------------------- nondeteiministic

Figure 7.3: ConsteUatioii Constructs

theory as within the range of this construct, it is more permeable. If we also see common 
vegetables as objects in the domain, the construct is very permeable! Permeability is 
im portant when we move on to  consider educational processes, for it will allow new ideas 
to be assimilated into existing structures.

Choice Corollary

Persons choose for themselves that alternative in a dichotomised construct 
through which they anticipate the greater possibility for the elaboration o f 
their system.

This corollary mirrors Popper’s searchlight theory of knowledge: we do not construct 
theories by filling a bucket with miscellaneous facts, but by actively searching out the 
best facts for our purpose. Kelly is suggesting th a t “better” choices are those th a t lead 
to an elaboration of our construct system. Elaboration comprises two aspects, extension 
and definition, which are analogous to  Popper’s generality and precision respectively. 
Extension is the development of constructs th a t have wider ranges of applicability; def
inition is the development of more precise constructs. The choices th a t people make, 
based on their constructs, can be deeply significant (such as choosing to see themselves 
as successful or unsuccessful people), or useful simply for solving a simple problem (such 
as choosing to see a quartic equation as a  quadratic in to make it amenable to  simpler 
methods of solution).

The choice corollary is very im portant, for it leads on to  some fundam ental aspects of 
the theory. For example, we can choose to take safe, constricted views, anticipating 
threats to , and the possible destruction of, our construct system if we take risks, or we 
can take extended views, anticipating maximal growth of our system through the use of 
bold conjectures. Popper advocates the la tte r course of action at all times, but then he 
is only concerned with detached theories, firmly placed into the th ird  world. Construct 
systems, however, involve not only these scientific theories, but also self-image. PCT, 
like Kuhn’s social view of science, proposes th a t scientific decisions cannot so easily be 
divorced from personal decisions. If scientists construe refutation of their theories as 
destructive of their reputations, then bold conjectures are threatening, and they must 
weigh up personal progress against scientific progress.
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Software engineers need to  take extended views in order to  see possible solutions to 
problems: this is threatening, as they may lay themselves open to  ridicule. They also 
need to  be able to  constrict their views, however, when they are moving towards an 
implementation. Constriction too early wiU lead to simple cloning of existing systems, 
and the inability to construe replications for novel situations. Extension too late may 
lead to divergence from the solution when effort needs to  be expended refining the con
struct system in order to  solve more localised problems. The engineer who walks into a 
crisis meeting, called to  discuss why the final stages of coding are behind schedule, and 
announces th a t he has just realised th a t the system is a  cucumber can expect some hos
tility. The engineer who, during a concept meeting, provides a  similar insight, th a t leads 
to  the realisation th a t the system should be considered using cylindrical, not cartesian, 
param eters, may be hailed as a genius. The choices of construct developments we make 
are therefore governed by constructs just like any other decisions. We m ust help our stu
dents to develop the construct system th a t governs these choices. This is selfconscious 
design and learning to  learn.

T hat the choice corollary maintains choice as part of the construct system is crucial. As 
Kelly notes,

“Frequently the therapist finds it difficult to understand why his client, in 
spite of insights which would appear to  make it clear how he should behave, 
continues to make the ‘wrong’ choices. The therapist, seeing only the single 
issue which he has helped the client to define, often fails to  realise th a t, within 
the system of personal constructs which the client has erected, the decision 
for action is not necessarily based on th a t issue alone but on a complex of 
issues.” [Kel63, pages 67-68]

We have all experienced this as teachers or parents. Students and cliildren often seem 
to have aU the “information” they need to  solve a problem, but persist is in getting it 
“wrong” . A typical scenario might run as follows:

P a r e n t ;  If you share out a  banana equally between two children, how many will they 
get each?

C h ild ; One.

P a r e n t ;  Now think, if you share out an apple, how much do they get?

C h ild ; Half.

P a r e n t ;  Good, and an orange . . .

C h ild ; Half!

P a r e n t ;  Very good, now a banana . . .

C h ild ; One!
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The subtlety of construing apples, oranges and bananas as things th a t share out in similar 
ways probably escapes us, for we are very familiar with it, but children are so often taught 
to do “sharing problems” with round objects th a t sharing a banana m ay well be seen 
as a  completely new problem and not as a replication of past events. Similar scenarios 
drawn from teaching students programming ( “You know how to  do this in Pascal, and 
you know the syntax of Ada, why can’t  you solve the problem?”) or m athem atics ( “But 
you know how to do this for relations, and you have just agreed th a t functions are special 
sorts of relations, so why can’t you do it for functions!”) will be familiar to aU teachers 
of Computing. If we don’t encourage students to  develop flexible construct systems, we 
m ust expect these problems of transference.

R ange Corollary

A construct is convenient for the anticipation o f a finite range o f events only.

As weU as developing suitable constructs for seeing the world, students need to develop 
the ranges suitable for the application of these constructs. It is im portant to  realise th a t 
the range of a construct can include other constructs, thus the range of the construct 
“property of a program /not property of a  program ” may have poles epitomised by the 
constructs “compiles” , “term inates” , ‘’red” , or “good program /bad program ” .

E xperience Corollary

A personas construction system varies as they successively construe the repli
cation o f events.

This is one the most significant corollaries for our purposes, for it makes learning an 
integral part of a person. Kelly makes this point exphcitly, when he writes

“Learning is not a special class of psychological processes; it is synonymous 
with any and all psychological processes. It is not something th a t happens 
to a person on occasions; it is what makes him a person in the first place.” 
[Kel63, page 75]

Moreover, this clearly indicates th a t “development” is not something th a t happens only 
to  children, as developmental psychology often seems to  imply, but a  continuing process 
of life.

It is im portant to realise th a t learning is not brought about by events alone, but by the 
construing of events. Kelly reserves the term  “experience” for such construing of events.

“It is not what is happening around him th a t malces a man experienced; it is 
the successive construing and reconstruing of what happens, as it happens, 
th a t enriches the experiences of his life. . . .  it is when m an begins to  see
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orderliness in a  sequence of events th a t he begins to  experience them .” [Kel63, 
page 73-74]

Popper makes precisely the same point:

“We do not stumble upon our experiences, nor do we let them  flow over us like 
a  stream. R ather, we have to  be active; we have to  ^make' our experiences.
It is we who always formulate the questions to  be put to  nature; it is we who 
try  again and again to  put these questions so as to elicit a  clear-cut 'yes' 
or ‘no’ (for nature does not give an answer unless pressed for i t) .” [Pop59, 
page 69]

This is crucial, for it turns on its head the commonly held notion of learning by expe
rience. As Kelly says, “it is the learning th a t constitutes experience” [Kel63, page 172] 
not simply the experience th a t brings about learning. Thus experience is not primarily 
a function of time spent on the job, but of our revision of construct systems. We can 
be in the vicinity of events for years, but experience very little, conversely, we can gain 
plenty of experience in a  short time if the situation is right.

This corollary also shows the flaw in the idea tha t we should expose students to a wide 
range of experiences. This cannot be done, for only the students themselves can construe, 
thus turning events into experiences. W hat we can do, of course, is to  present events 
which we believe they are capable of turning into experiences, and also a ttem pt to provide 
the right sort of environment for this to  occur. In particular, we need to  encourage 
students to  develop permeable constructs, for

“ a person who approaches his world with a repertory of impermeable con
structs is likely to find his system unworkable through a  wider experience 
of events. He wiU, therefore, tend to  constrict his experiences to  the nar
rower ranges which he is prepared to understand. On the other hand, if he 
is prepared to  perceive events in new ways, he may accumulate experience 
rapidly” [Kel63, page 172]

Bannister, in a study [Ban65] which has also been confirmed by Fiirst [F78], has shown 
th a t there is a relation between the sort of feedback received and the resulting changes 
we make to  our construct systems. Validating events are likely to  lead to  a  tightening 
of the system, so th a t it is subsequently interpreted as more deterministic; invalidating 
events lead to  a loosening of constructs. If we establish an environment in which students 
carry out drill exercises, which will validate constructs but rarely challenge them , we will 
certainly reinforce the system, but we will also change its nature, causing the students 
to see it as more deterministic. This may serve them  well if they are faced with rote 
problems, but when creativity is required they need to explore events in ways in which 
their system does not fall apart every time they make an incorrect predication. If they 
see the world in terms of right answers, however, and their rôle as questing for these
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answers, they may well flounder. Kelly suggests th a t good development is encouraged 
by cycles of tightening and loosening, rather than  extended periods of one or the other. 
This idea seem analogous to  the simulated annealing used in the learning stage for neural 
networks.

Exactly what changes do we make when invalidation occurs? Kelly suggests th a t our 
constructs are layered, so th a t we attem pt to  change the most exposed constructs, which 
are likely to  be those which our experiment set out to  test [Kel55, page 160]. In this 
respect our personal construct system has a  (layered) core, protected by an outer level, 
similar to the hard core proposed by Lakatos for research programmes. One of the 
criticisms of PC T is th a t this layering is not explicit. Duck has suggested th a t it is 
possible to  express this within the theory itself [[Duc83] cited in [Jah8 8 , pages 9-10]]. 
This is significant, for it suggests th a t the theory is powerful enough to  express both 
“content” constructs and “process” constructs.

We should also note th a t changes to  a  construct system are not autom atic simply because 
we experience invalidating events. We can choose to ignore inconsistencies (as scientists 
do in Kuhnian paradigms) for inconsistency is itself a construct th a t is open to  change, 
and we may perceive inconsistency more in term s of maintaining a consistent wide view 
than  as conflicts between local details. Thus we do not reject a  construct system th a t is 
serving us well in coping with life simply because of one small inconsistency. Popper’s 
view on refutation can be attributed to  his separation of science from the scientist, and 
the formation of closed scientific theories.

M odulation  Corollary

The variation, in a personas construction system is limited by the permeability 
o f the constructs within whose range the variants lie.

It is not only our externally visible actions th a t are governed by our construct systems, 
but also the changes we make to  the system itself.

“Even the changes which a person attem pts witliin himself m ust be construed 
by Mm. The new outlook which a person gains from experience is itself an 
event; and being an event in his life, it needs to be construed by him if he is 
to  make any sense out of it.” [Kel63, page 79]

If a  student has a construct “part of Software Engineering/not part of Software Engineer
ing” such tha t the discipline is seen as nothing more than writing working programs, this 
impermeable construct wiU inhibit changes as a  result of experience. If we, as teachers, 
endorse such impermeable constructs, teaching tha t design is defined by the life cycle, 
for example, rather than  presenting this as one view of the process, then students will 
have great difficulty learning beyond these constructs. Note th a t it is not whether we 
view life cycles in this way th a t is im portant, but how our students construe them. If 
students construe “worth learning” as a  longitudinal subordinate of “part of Software
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Engineering” , and their view of the discipline is limited to  a  few simple constructs, then 
they will never develop as software engineers, choosing to  learn only those topics tha t 
fail within their limited construct systems.

It is not only at the technical levels th a t this presents a problem, of course, for a  student 
who has an impermeable construct for “true/false” such th a t “said by lecturer/not said 
by lecturer” is seen as a subconstruct, may have great difficulty in higher education, 
where tru ths are not the order of the day. Such students are unlikely to  reconstruct 
their systems simply in response to  technical events, they are more likely to  revise the 
construct pertaining to  individual lecturers. To change this aspect of the  system requires 
events targeted at the task.

Fragm entation Corollary

A person may successively employ a variety o f construction systems which 
are inferentially incompatible with each other.

As we develop our construct system, it is generally the lower level constructs th a t change 
as a result of experience: we do not, in general, change higher-level constructs every time 
a detail is out of place. The new subsystems we devise need not be consistent with the 
old ones, but in a  “normal person” they wiU be consistent with the established higher- 
level constructs. The fundam ental postulate carries connotations of progression, and 
consistency needs to be seen with respect to  this progression. For example, an event may 
cause us to shift from construing Fortran as a bad programming language to  construing it 
as a good one. This may seem inconsistent, but if it is accompanied by the development 
of a  new construct, such th a t Fortran is seen as good when applied to  numerical analysis 
type problems, the wider consistency of the system is maintained.

C om m onality Corollary

To the extent that one person employs a construction o f experience which 
is similar to that employed by another, their processes are psychologically 
similar to those o f the other person.

This corollary amounts to  a rejection of stimulus-response psychology, for KeUy is as
serting th a t it is not events th a t lead to  behaviour, but the construing of events. Thus 
if two people behave in similar fashion it is because they construe events similarly, not 
because the events were similar. This is of fundam ental importance for education, for 
it suggests th a t if we want to produce software engineers with certain behavioural char
acteristics then a common curriculum wiU only work if the students aU possess similar 
construct systems on entry. It is noticeable, for example, how m ature students behave 
very differently from the more traditional students who come straight from school. W ith 
widening access policies, such issues become crucial. If we accept PC T , and yet we still
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establish, oar curriculam in term s of common aims and behavionral objectives, we have 
to accept as a consequence th a t the experience for each student should be tailored, to 
develop their construct systems in such a way th a t the required behaviour is expected. 
PC T  is closely associated with the idea of student-centred learning, but unfortunately 
this idea has come to be construed by m any academic adm inistrators as “cheaper” . In 
fact, of course, just as individual therapy is likely to  cost more than  group therapy, so 
we should expect student-centred learning to  cost more than  group-centred learning.

W ith “formal education” in subjects like m athematics and physics, where most of the 
constructs developed have been formed with the help of a teacher, we can expect some 
conformity. The teacher carefully controls events, and provides the validation. After 
several years of experience, the student comes to  develop a construct system suitable for 
algebraic manipulation. This construct system, however, may well depend on a teacher 
for validation: the pupil may not construe th a t x + x = 2x for any reason other than  the 
replication of teacher’s validations. If we subsequently remove the teacher’s validation 
from the system, the student is lost. W hen we ask students to  make explicit aspects 
of their construct system, by explaining why they predict th a t x + x =  2x, we do not 
accept as an explanation “because I got ticks for saying so for many years” , although in 
practice this may well be their reason. It is im portant, therefore, th a t if we want students 
to be able to  continue learning after we remove the teacher then we should help them  
to develop not only a construct system th a t conforms because of external validation but 
also a construct system th a t wiU continue to  function when teacher presence is removed. 
This amounts to a construct system th a t admits to the loss of innocence.

We should also remember th a t similarity in behaviour can arise because people have 
decided they want to  behave in the same way. W hen twenty students give very similar 
answers to  an examination question, we cannot infer simply th a t they all see the problem, 
in the same way because they have common constructs. It may well be the case th a t 
they have all seen the problem of passing the examination in the same way, decided 
upon the sort of answer th a t is expected, and construed the problem accordingly. Thus 
commonality leads us naturally to  consider problems of sociality W hat we, as teachers, 
expect of our students will be construed by them , and can effect their actions. We are 
part of the problems we set.

Socia lity  Corollary

To the extent that one person construes the construction processes o f another,
they may play a rôle in a social process involving the other person.

Commonality is neither necessary nor sufficient for social progress. There are many 
situations where it is better for people to behave differently in groups. The sociality 
corollary, therefore, is crucial if we expect software engineers to  function within teams, 
interact with customers and users, and so on. Note tha t, unlike fragm entary notions of 
psychology, we do not have to  shift from cognitive to  social psychology to  discuss this

173



www.manaraa.com

aspect of behaviour. PC T is a  psychology of the person, and the person can function as 
part of a  group.

Kelly’s term  “rôle” needs some explanation, for it is not something th a t is imposed upon 
a person, but something th a t comes from within. Thus we cannot say th a t a software 
engineer has a  rôle to  play in a team , only th a t the engineer has chosen to play the rôle. 
The rôle chosen corresponds to  the set of constructs adopted to  fit in with others. Only 
one person need adopt a  rôle in social interaction, although it is not uncommon for more 
participants to do so. Thus it is suiRcient for the engineer to  adopt a  rôle in discussing 
requirements with a  customer: the customer does not need to  adopt a rôle too.

In playing a rôle, the person does not simply adopt the construct systems of other 
participants, but seeks to  construe their construction systems sufficiently to  adopt a 
suitable rôle. The engineer does not necessarily look at the world as a  computer user 
when discussing requirements, bu t m ust be able to  construe the world as a user would in 
order to participate in social discourse. This is a high-level skill, th a t requires a  flexible 
and yet robust construct system. Flexible because the construct system m ust incorporate 
the user’s constructs readily. Robust because we do not want rôle playing to  influence 
unduly our own construct system. Being able to  see the world as a child should not make 
us become child-like in our constructs. It is commonly noted th a t teachers, who spend a 
large amount of time rôle playing, often inherit aspects of their pupils behaviour.

This leads us to a very im portant point: in construing the construct systems of others we 
act as a  personal scientist, but for complex problems, we need to  make public the theory 
we are devising. The bipolar constructs of PC T  are inadequate for this, for they amount 
to a binary system, and we require much richer structures for expressing typical software 
engineering problems. These are provided by our theory presentation language, and it is 
the formal education of software engineers th a t will permit us to  construe these in com
mon ways, thus allowing the theory presentations to act as specifications. Treating the 
writing of the theory presentation as a sequence of events leads to  exploratory discourse, 
where we debate (possibly with ourselves) what we mean by what we have written or 
said. Using theory presentations to carry out proofs will lead us to  construe properties 
such as consistency and correctness, which may in turn  lead to  further constructs such 
as fitness for purpose. This is crucial, for it forms the missing link between Hoare and 
Cries, with their scientific theories, and Naur, with his psychological theories (or per
sonal construct systems). Note th a t it is not sufficient for students to  learn how to  write 
specifications, they also need to  appreciate how they, and others, might construe them.

Since the customer wiU not, in general, have undergone the same sort of formal education, 
these external theory presentations wiU need to  be made available in other forms if they 
are to be used as the basis for contractual boundaries. The forms wifi typically involve 
translation into natural language, implementation of prototypes, or in terpretation by the 
engineer. In aU of these forms, the customer-as-scientist can use this theory presentation 
as the basis for experiments, deciding whether invalidation should lead to revision of 
constructs, or the construal of the theory as “wrong” .
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Teaching and studying are both social processes. Teachers construe their students’ con
structs, and vice versa. Thus teachers may adapt to interact with each student, and 
students adapt to interact with each teacher. If we wish to  communicate a  useful set of 
constructs for software engineering, therefore, we need to  participate in a  social process. 
We might throw all the onus on the student to  adopt a rôle, of course, but typically 
the teacher, supposedly having the better developed construct system, will adopt a  rôle 
too. This means th a t the teacher not only has to understand the subject, and be able 
to  make constructs explicit, but also has to  understand the constructs th a t the student 
will be bringing to  bear in the social process, and engineer events th a t will help the 
constructs to develop in the desired way. This is widely acknowledged amongst primary 
school teachers, who realise the importance of understanding how their young pupils 
see the world, but seems to  be largely ignored in higher education. This might be as a 
result of developmental psychologists giving the impression th a t development stops at 
adolescence, so tha t students are already developed by the time they reach us and so, 
since they are adults like us, our constructs will be similar. In practice, of course, even 
if some aspects of their construct systems will lead to commonality, aU students, and 
indeed aU teachers, are different.

7.2 D iscu ssion  o f  P C T

In the next chapter we will discuss in detail how we might teach a few aspects of Software 
Engineering th a t arise from consideration of our model. Before doing this, however, it 
is convenient to  consider some general educational points th a t arise from PC T, and how 
they might influence our curriculum design task.

The first thing we can note is th a t the nature of “curriculum” itself has to  be understood 
before we can attem pt design. If we view the curriculum as a rigid plan for action, whilst 
embracing PC T, then we m ust believe th a t we can predict all of our students’ construct 
systems on entry, and also how they will develop. As this seems untenable, we need a 
more flexible view of curriculum. Doll sums up the stance we will take, when he writes

“In a modernist perspective, curriculum plans are to be well articulated, with 
ends clear and means precise. This is the key to the Tyler-Hunter model.
In a post-modern curriculum there m ust be, as Dewey realised, a  sense of 
indecision and indeterminacy to curriculum planning. The ends perceived 
are not so much ends as beginnings; they represent ends-in-view, or beacons, 
which act as guides before the curriculum implementation process begins.
But once the course develops its own ethos those ends are themselves part 
of the transform ation; they, too, along with the students, the teachers, the 
course m aterial, undergo transform ation. The locus of power and direction 
shifts from the external to the internality of the course experience.” [Dol89, 
page 250]
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In essence, DoU is noting th a t curriculum design is an E-Problem, bound into a con
tinually changing environment, where the quest for solutions changes perceptions of the 
problem signiiicantly, thus the curriculum is not a  final product, but an on-going process.

One way of helping curriculum designers to  solve this E-Problem is to  provide a number of 
resources upon which they can draw when making situated actions. Most of the Software 
Engineering education literature, however, contributes to this process in the form of sets 
of aims, objectives, and course content. T hat is, it offers informative discourse. Our 
contribution here is rather more fundamental; it seeks to initiate some of the exploration 
necessary for the process tha t currently seems sadly lacking. We would argue th a t the 
provision of aims and content is not enough, and is of limited use at the current stage of 
development of the discipline. Adopting the ACM curriculum [Do89] does not help with 
the process of curriculum design, it simply defers the real issues until the implementation. 
Inclusion of “relations” in a  published discrete mathematics syllabus is only of real value 
if it is accompanied by a position on why they are included, how they should be taught, 
how the student should be encouraged to perceive them, and so on. Similarly, discussion 
of Ada as a  first teaching language is only of value if carried out within a community 
th a t has a  sufficiently refined notion of what it mans to teach “programming” , what a 
programming language is, and what value systems are being used to  make the judgement.

One of the grave dangers in writing about curriculum design at the level of course aims, 
objectives and content is th a t some teachers may feel justified in, or coerced into, adopt
ing ideas put forward without gaining a deep understanding of the issues involved. They 
adopt topics and teaching methods, for example, on authority, thus avoiding the loss of 
innocence. They use group work, practical sessions, and CASE tools not because they 
have a good reason, which they are prepared to defend, but because someone else has 
suggested they should. Moreover, they frequently misinterpret these suggestions in quite 
fundam ental ways. Schupp, for example, has noted th a t the proposals for “New M athe
m atics” arose in reaction to the Soviet launch of Sputnik in 1957. The end was to  be an 
improvement in the uses of m athem atics for science and technology. He goes on to  note, 
however, th a t

“the means (structural cleaning up, logical foundations, lingual exactification) 
became the ends. . .  .one can state  th a t New Math certainly did not promote 
applied m athematics teaching.” [Sch89b, page 41]

The same problem of m isinterpretation has been noted by Marion with respect to  the 
typical discrete m athematics syllabus in Software Engineering:

“how does one prevent such a course from degenerating into a  collection of 
discrete topics or from being used as a  way to rush through as much material 
as possible so as to  get to  the good applications? . . .  how does one keep 
uppermost in mind the need for m athem atical rigour?” [Mar89, page 276]

The problem of coherence is fundam ental to  this research programme, for our model has 
sought to  dem onstrate th a t there is a t least one way in which many of the topics usually
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associated with Software Engineering may be reconciled. This model may be nsed as 
the basis for teaching, providing constructs for the students to  use when assimilating 
m aterial. It may also be used as the basis for curriculum design, thus providing a 
framework for rational discussion.

It is the acceptance th a t the curriculum is not just a text describing what m ust be 
done, but a  set of constructs th a t wiU guide teachers and students through the learning 
process, th a t justifies our choice of title for this thesis. There is no intention of producing 
“the curriculum” for Software Engineering, but hopefully by helping teachers to  develop 
appropriate constructs for Software Engineering education, and by raising events for 
them  to  validate or invalidate, a  contribution to  curriculum design is being made.

PC T suggests th a t one of the most significant rôles the teacher will play will be to use 
his or her construal of the curriculum to engineer a suitable environment for students 
to  develop new constructs. Kelly has suggested a number of heuristics for doing this 
and, although these were originally intended for therapists rather than  teachers, we will 
briefly see how they may be applied to  education.

U se of Fi’esh E lem ents

It is useful i f  a fresh set o f elements is provided as the context in which new 
constructs are to emerge.

This is interesting, because is seems to  run contrary to conventional educational practice, 
which is based on teaching by analogy. In fact, however, we m ust take care to  distinguish 
between developing new constructs and extending the range of existing ones. Analogy 
often helps us to  bring existing constructs to  bear on predicting events, bu t not to  develop 
entirely new constructs. If we are trying to  add a new construct such as “formal/informal 
languages” , which students currently do not have, there does seem to be some support 
for this heuristic, for introducing such a construct with well-understood examples such as 
arithm etic expressions is fraught with problems. Students want to construe “2+3” and 
“3+ 2” as the same string, because they are bringing a rich construct system to bear on 
the problem, and they construe too much from it. Using abstract examples, in the sense 
th a t they are not construed as replications by the students, overcomes this problem, and 
once the construct has been established, the range can be extended by giving several 
examples of existing elements already bound into the construct system.

E xperim entation

The next condition which is hospitable to the formation o f new constructs is 
an atmosphere o f experiment.

An environment should be provided in which the students can try  out new constructs 
in relative isolation, thus we try  to  avoid establishing situations in which complex con
stellations occur. To achieve such an environment the effects of the experiment must be
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limited. This is analogous to  the use of simplihed models for teaching science, where 
students are encouraged to develop constructs such as energy conservation by experi
menting in worlds consisting of frictionless planes and inextensible strings. Only later 
do we provide environments where heat is dissipated through friction.

We can use these two heuristics to  discuss the debate between teaching bottom -up, 
where details are introduced before general principles, and top-down, where principles 
are taught first. It is often said, for example, th a t one cannot teach what programming 
is before you have taught a  language like Pascal. This, we would argue, involves working 
against the first heuristic, for once you have taught Pascal you may have great diificulty 
in teasing out the construct “programming” as distinct from “Pascal programming” . 
Rather, we would suggest a  top-down strategy, where the construct is developed directly 
using simplified models with which the students are not familiar, but keeping the con
struct as permeable as possible. This is not always possible, but experience suggests 
th a t it can work very efficiently. We shall discuss examples of this approach in the next 
chapter. A curriculum designed on these lines is “inverted” , in the sense th a t it allows 
the introduction of general principles before details, rather than the more traditional 
approach [C0 I186].

A vailability  o f V alidating D ata

I f  returns on the prediction are unavailable or unduly delayed, one is likely to
postpone changing the construct under which the prediction was made.

It is im portant to  realise th a t only the experimenter really knows what the aim of the 
experiment was, and can construe the experiment as validating or invalidating contructs. 
If we set exercises for our students, their status should be clearly understood. They 
might be experiments we are carrying out on the students, to  provide feedback on the 
effectiveness of teaching for example, or they might be suggestions for experiments the 
students should carry out. The la tte r use can be problematic, however, as our suggestions 
for actions will not necessarily lead to  the experiments we anticipate, indeed they may 
not even lead to  any real experience for the students. Programming tasks, for example, 
may well be validated by students using a simple “running/non-running” construct. In 
this case we may be reinforcing some bad programming habits (as we see them ). If we 
expect students to  bring more complex constructs to  bear on ta^ks such as programming 
or writing specifications, then we m ust ensure th a t these constructs are developed first, 
and th a t the student sees them  as sufficiently permeable to admit the events to their 
range. If we teach students to “comment code” , for example, we are developing a fairly 
Impermeable construct, and it is quite likely th a t they will not see the lessons learned 
as applicable to documenting proofs, specifications, or designs. We may end up teaching 
these as separate concepts, then attem pting to develop super-constructs to embrace them  
all. This, we would argue, is the danger of a  fragmented curriculum, and is one of the 
factors acting against progress in Software Engineering education: as it becomes seen 
as necessary for the engineer to  understand more and more “topics” the fragm entation
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increases, but the understanding decreases, for the topics are only understood in terms 
of impermeable constructs.

A voiding Threat

I f  the elements out o f which it is proposed to form  a new construct commonly 
involve threat, that is, i f  they tend to elicit a contract or an issue which is 
basically incompatible with the system upon which the person has come to rely 
for his living— he may not readily utilize the elements for form ing any new 
contract.

Kelly, being primarily interested in therapy as the application for his theory, has a  great 
deal to  say about “th rea t” and also one of the symptoms it evokes, hostility. Hostility is 
the reaction to  threat th a t is associated with the desire to protect a construct system by 
interpreting events so th a t invalidation cannot be observed. This m ust not be confused 
with Kelly’s use of the term  “aggression” , however, which is the symptom  of a person’s 
active experimentation with the environment. Thus hostility is the result of avoiding 
experience, whereas aggression is the pursuit of it. It is im portant to  realise th a t threat 
not only hinders the development of construct systems, but may also retard  it. If a  person 
is being forced to  reject the current system in the face of th reat a common reaction is to 
fall back upon earlier systems which can be held even more dogmatically.

We can think of the loss of innocence as posing a threat for many people, because their 
construct systems teU them  th a t complex design problems wiU require decisions they 
are unable to make confidently. The two reactions we noted, pretensions to  genius and 
refuge in style, are both examples of adopting existing construct systems rather than 
risking the development of new ones. The acrimonious debates th a t are symptomatic 
of many discussions in Software Engineering demonstrate the hostihty th a t arises as a 
result of confronting these reactions, and hence posing threat. Of course, one person’s 
aggression can lead to  another person’s threat: it is quite possible th a t one party  in a 
debate is genuinely trying to ask provocative questions to gain experience, but if another 
person interprets these questions as threatening events, hostility will occur. This is where 
the sociallity corollary becomes so im portant, for in gaining experience, whether it be 
learning in an educational establishment or performing requirements analysis, we must 
realise the possibility of threating others and act accordingly. Our learning is not a 
private affair if we make visible our experiments so tha t they can be construed by others. 
The software engineer who poses the question “why does this job need to  be done” or 
“why have we been told to  use this m ethod” may well be aggressively seeking experience, 
but could be threatening the job security or reputation of others.

On-the-job training, therefore, requires a degree of personal skill if genuine experience 
is to  be gained. One of the tasks of the teacher is to  provide a secure environment 
where experiments can be carried out without undue threat. Thus students can engage 
in design tasks without their careers depending on them , or try  out new programming
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styles without the fear of ridicule. Assessment and group work, however, increase the 
risk of th rea t, and m ust he treated with extreme caution. The argum ent th a t group 
working is essential in industry, so students should learn to  work in groups, should lead 
us to  conclude th a t they need to  develop constructs th a t wiU enable this to  happen, not 
th a t they should a ttem pt to  develop their own construct systems largely within group 
experiments.

A void Pre-occupation  w ith  Old M aterial

Old and familiar material tends to be fixed in place by old and childlike con
structs; it is only as we let the client interweave it with new and adult material 
that he stai'ts bringing his constructs up to date.

This is a particular problem for students who have “done computing before” , for they 
bring with them  a set of constructs, possibly developed and validated over a number of 
years, th a t are usually quite impermeable. They are also likely to  have been subjected to 
events th a t validate, rather than invalidate, these constructs, so they are likely interpret 
their systems as deterministic. If we seek to  build on these constructs too directly, by 
suggesting invalidating experiments, we pose threats: if we suggest further validating 
experiments we reinforce the constructs still further. This suggests th a t it may be ap
propriate to avoid direct confrontation until some new constructs have been developed 
to replace the old. Teaching “programming” through a language th a t is unfamiliar to  aU 
students, for example, might be more productive than  attem pting to  build on experiences 
with Pascal, Fortran or Basic. Indeed, avoiding the term  “programming” itself might be 
helpful, except th a t most students would find such avoidance itself threatening, as their 
understanding of what they have come to study should probably include programming.

7.3 Sum m ary

In this chapter we have introduced PC T and discussed some of its ramifications for 
software engineering education. We have not intended to explicitly link this discussion 
to our model of system design, but we would expect the reader to  have formed some 
constructs concerning how this might be done. One particular rôle this chapter has 
performed is to forge the link between the individual and social actions, involving both 
theory building for engineering and construct formation in education. Indeed, we can see 
th a t our model of system design, together with the acceptance of PC T , might form an 
excellent basis to explore the similarities between Education and Software Engineering.
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C h a p ter  8

Curriculum  D esign  E xperim ents
"/n Dip. Ed., as in any fairy tale, just when you think you^re out o f the 
woods, there is suddenly more to them than you ever imagined. Just when 
you think you have escaped to an open quiet place it turns out you’re still in  
them. Even later, the woods you’re wandering in turn out to be yourself”

A Student Teacher

We have now reached the stage where we can reap the rewards, and suffer the con
sequences, of our research programme. Our aim was to increase the understanding of 
educational practitioners, so th a t they can improve the quality of software engineer
ing. In this chapter we will discuss some of the consequences of this research for higher 
education. Boxer develops the analogy of a  business as

“a tangle of conversations which have formed into a knot [which can be 
thought of as the particular way in which these conversations come together] : 
they are the history which the business is to  those who are in its employ. The 
knot in this sense is the explanation which governs who can make choices 
when, where and how about what kinds of things.” [BoxSB, page 421]

This also seems a very apt analogy for the institution of higher education, and it high
lights a decision we need to  make before proceeding with this chapter: what view are we 
going to  take of the knot?

Our research has been highly reflexive, for by discussing the nature of design we have 
arrived at some tentative results which we surely should seek to  apply to  the design of 
the curriculum, as well as to  the design of the curriculum to teach design: thus process 
and content once more merge. The former, however, takes us well and truly into the task 
of untangling the knot. It presents us with all the problems of self referential systems, 
particularly those of consistency [Smu87]. It also raises issues of the rôles of management, 
government, students and teachers, issues of control, academic freedom, ethics, and many 
more facets of education. Our discussion may well lead us in directions th a t will be 
interpreted as radical, subversive and threatening. This alone should not worry us, of 
course, for there was never any guarantee th a t this enterprise would be comforting for 
the reader, or the author. There is one reaction we should guard against, however,and 
th a t is the “all right in theory” response. If our research leads us to  conclusions tha t
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can only be utilised in some utopian world, it is likely to  be ignored— a fate far worse 
than  refutation. We might argue, of course, th a t bringing about such an idealised world 
is part of the teacher’s job, but this leads us to  an infinite regression, for the "all right 
in theory” response will doubtless resound again. Fortunately, however, we can escape 
through the horns of this dilemma by showing th a t our research has applications even 
if we are content to leave the knot unexplored, for we can tinker with the loose ends 
of string th a t protrude. This may not improve software engineering education as an 
institution, but it might improve the educational experience for some students.

In the two sections th a t follow we wiU sta rt by briefly exploring the implications of our 
research for the problem of untangling the knot. We wiU then sketch out some activities 
th a t have been carried out in tidying up loose ends.

8.1 U n tan g lin g  (or T igh ten in g?) th e  K n ot

One of the m ajor results of our research has been the conclusion th a t software engineering 
design is, and m ust be, a  self conscious activity. If we accept this, then it is vital tha t 
students are educated in such a way th a t selfconsciousness develops. Moreover, our model 
suggests th a t students need to  be able to  construct theories to solve novel problems, thus 
they need to be able to learn without the support of a teacher. We need, therefore, to  
encourage our students to  become selfconscious learners. This poses a m ajor problem for 
the educational establishment, however, which despite its protestations, is still largely 
an institution where control is vested centrally, dissipated through resource allocation, 
common curricula, and teachers, with students coming far down the list. “Academic 
freedom” means freedom to work within certain norms and constraints. The teacher’s 
role in this is largely to  subvert the behaviour of the errant student in an a ttem pt 
to  achieve conformity, measured through examinations of one sort or another. Even 
“research students” are expected to  conform to fairly restricted norms, in spite of the 
fact th a t they are supposed to be demonstrating an ability to  move the frontiers of 
knowledge^.

One m ajor consequence of the shift of emphasis from “teaching” to  “learning” is to 
deprive the researcher of an established methodology for investigating educational prob
lems. Harri-Augstein sums this up perfectly:

“If educational research concerns itself with learning and the researcher/teacher 
defines learning in this way, then the priority of scientific objectivity becomes 
suspect. The pursuit of objectivity normally involves the educational re
searcher in a  detailed control of experimental situations. But studies aimed 
a t increasing self-organisation require th a t the researcher recognise th a t the 
learner has his or her own point of view, and needs the freedom to explore

^The author decided, through wisdom or cowardice, not to pursue this line of argument! Reflexivity 
is all very well, as long as it applies to someone else.
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each learning situation” [HA86, page 61]

If this is the case, we are presented immediately with an inconsistency within current 
educational developments. Industry is currently calling upon us to  produce students who 
can communicate effectively, solve novel problems, manage change, design, and carry out 
all the activities th a t our research suggests require selfconsciousness in learning to  learn. 
Government, however, through its various agencies, is calling for more objective metrics, 
such as standardised testing of student and teacher competence, both of which become 
increasingly difficult as we move towards producing students who are learning to  learn.

We should also observe th a t the morality of educational experiments, in the traditional 
scientific sense, is questionable. Subjecting students to  experiences with the aim of 
refuting our theories is, in the au thor’s opinion, unethical. We should, of course, trea t our 
teaching as experimental in the sense th a t will recognise refutations and take appropriate 
action, but we should not undertake deliberately risky experiments or establish controls.

A learning to learn curriculum can be considered as a  “double-helix” [HA85, page 62]. 
One component, the learning of the learning process, develops alongside the other, the 
learning of discipline content. This is complicated for software engineering design, how
ever, by the observation th a t the content, as suggested by our model, is also a double 
helix of process and theories. This leads us to  ask how the two process components 
are related. If we help students to  become effective learners, wiU their theory building 
skiUs in software design come for free? Conversely, if we teach them  how to construct 
theories in software engineering, wiU this make them  more effective learners? A tentative 
answer we would offer to  both questions is “yes, if we can develop sufficiently permeable 
constructs” . Indeed, both approaches can be used simultaneously, as we shall see in the 
next section.

W ithin the double-helix model, the teacher has at least two roles to play. First, th a t of 
an experienced researcher helping the less experienced students to  develop their m ethod
ology. In this role the teacher is a  co-student, helping the students to  manage their 
learning, suggesting techniques for improving learning, and also using previous research 
results to  offer ways of approaching the subject. The second role is th a t of an oracle, 
or provider of information. Harri-Augstein develops the notion of a  “mindpool” as the 
collected knowledge of the world, similar to aspects of Popper’s th ird  world [HA78]. The 
teacher can act as a  window onto the mindpool, or a librarian helping the student to 
find relevant information, including higher level structures. In this role, the teacher may 
work in several different modes: lecture mode, offering students pre-defined sets of in
formation; tutorial mode, offering a more flexible set of interrogation procedures; and 
so on. Obviously these roles interact, for the co-researcher may decide to help by ask
ing the oracle to deliver information. It is crucial tha t an appropriate balance is struck 
between these roles, however, for students will not learn to learn if they spend all their 
time listening to  an oracle, but similarly they wiU not learn to  learn if left to  flounder 
by themselves in a vast mindpool with no lifeguard.

It is through these roles, and their interaction, th a t the teacher exercises control. “Con
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tro l” , however, is simply one pole of a  construct, which can have m any other ends, in
cluding “chaos” , “disorganisation” , “freedom” or “anarchy” . Clearly the way a teacher 
exercises control will be largely determined by the construct system in use. A teacher 
th a t fears chaos as the alternative m ay exercise tight control, a  teacher th a t fears loss of 
freedom may exercise very little control. We would argue th a t exercising tight control 
of the double-helix is also likely to  lead to  tight construal of the process component in 
the helix of content, so tha t: methods are stressed not as tools to  be used but as con
trols to  be obeyed; theories are not personal in oprigin and interpretation, but objective; 
and self consciousness, with its consequences of possible student rebellion, wiH be played 
down in favour of received wisdom. Indeed, much of our discussion on m ethod can be 
reinterpreted to  apply to  teaching method: is it a  plan, a  control, a  rationalisation, or a 
set of useful techniques? We should also realise th a t the controls we exercise as teachers 
win largely be governed by our personal m yths of education, such as “students learn 
by doing” , “students learn when they take notes” ,“ students need to  learn bottom  up” , 
and so on, most of which are based on our recollection of how we feel we learn most 
effectively.

Clearly, the way in which controls are exercised forms part of the professional judgment 
of teachers, and we would not presume to say how this should be done. It is precisely this 
exercise of control, and its implications, th a t constitute the teacher’s view of curriculum 
design. Hence the conclusion th a t we cannot teU another teacher how to design a software 
engineering curriculum, only offer to  engage in discussion and relate experiences. In 
any particular circumstance, these controls will be affected by those inherent in the 
knot. Imposition of tim etable, scheme structure, assessment m ethods, cultural norms, 
“custom er” expectations, student backgrounds, laboratory facilities, professional bodies, 
short-term  and long-term industrial requirements wiU aU have a part to play, for the 
teacher is not free to  teach, but free to  exercise judgments only within the environment 
provided by the knot.

8*2 P la y in g  w ith  L oose Ends

In this section we wiU briefly describe some applications of our discussion to the task of 
tidying up some loose ends emerging from the establishment knot. These applications 
have not been carried out in a  laboratory, under controlled conditions, so they are not 
“experiments” in the scientific sense of the term , but they are experimental in the sense 
th a t they they have allowed the author to validate, or invalidate, his personal constructs 
and hence gain experience. It is im portant to  realise th a t these experiments have been 
carried out in the ebb and flow of the environment provided by a typical higher educa
tional establishment. They are experiments in “realistic teaching [which is] focussed on 
what can be achieved in practice by typical teachers in realistic circumstances of work 
and support” [Bur89, page 9]. The stance we are adopting here has been summed up by 
Gough, who writes.
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“I cannot reconcile mucli of the rhetoric of new-paradigm thinking with the 
kind of cnrriculum work th a t I want to  do now and in future (for example,
I am suspicious of the quality of life after quest: what does one actually do 
after one has found  the Holy Grail?). Certainly this sort of rhetoric is too 
pretentious for the kind of work I am doing here, now. I am not attem pting 
to write a  chapter in one of the Great Books, I am writing a work-in-progress 
report—a short story—with the intention of engaging you, the reader, in a 
further exploration of the world it signifies: ‘W hat we need is not great works 
but playful ones—A story is a  game someone has played so you can play it 
too’ (Sukenic 1969, quoted in W augh 84 [Wau84]) ” [Gou89, pages 226-227]

The experiments described comprise two types. First, there is the design of a whole 
scheme for the continuing education of software engineers, leading to  the award of an MSc. 
Second, there is the design of initial education in software engineering for undergraduates.

C o n t in u in g  E d u c a t io n  in  S o f tw a re  E n g in e e r in g

It is im portant to  note the unusual rôle of continuing education in Software Engineering 
for, as Mills observes,

“In a held more stable than  Software Engineering, university education plays 
a dominant rôle in shaping the principles and values of the held, while indus
trial education consists of refresher and updating courses in fringe and fron
tier areas. But university education in Software Engineering was not avail
able to the m ajority of people who practice and manage it today.” [Mil80a, 
page 1158]

Mills, therefore, proposes th a t it is necessary for continuing education in this held to 
consider not only fringe and frontier areas, but also the fundam ental principles of the 
subject as they are now perceived. Although the necessity of continuing education is 
generally accepted, the fundam ental nature it may need to  assume is not. Moore, for 
example, holds up a very different exemplar of continuing education when he writes

“After being on the job for a  m onth, a fellow practicing software engineer in
vited Kim to a CDR to review the SDDD, STDs, and updates to the STLDD,
SRS and SDP. Kim was told th a t an SQA engineer would be there and to  
get the most recent version of the SDDD from SCM. Did Kim go into mas
sive panic mode? No! Having attended the Softwaie Engineering Workshop 
(SEW) two weeks earlier, Kim was able to  remember some of the acronyms.
Kim referenced the SEW notebook for an explanation of the other acronyms.
Kim now knew the meaning of the acronyms, understood how everything 
interrelated, and what to  expect at the CDR.” [MP88, page 42]

Mills is totally disparaging of such courses, stating that
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“There are any num ber of courses which will comfort, rather than  educate.
They are ‘practical’, ‘easy to  understand’, ‘the latest techniques’. On a tten 
dance, programmers discover various new names for common sense, super
ficial ideas, and thereby conclude, with much comfort and relief, th a t they 
have been up to date all the time. But unfortunately for the country, these 
programmers have not only learned very little, but have been reinforced in 
the very a ttitude th a t they have little to  learn.” [MilSOa, page 1158]

One of the most significant controls exercised by the knot on continuing education is 
imposed by industry, who typically fund such activities directly. In 1982, Hatfield Poly
technic was fortunate to  be approached by a local company, STC-IDEC, who had seen 
the longer-term benefits which might accrue from a fundam ental continuing education 
programme for its senior technical staff, and wanted to  commission the design, develop
m ent and implementation of such a programme. The programme was to  be concentrated 
on the technical foundations of the subject, and how these could be brought to  bear 
ill solving real problems. This programme, which eventually became a Postgraduate 
Diploma in Software Principles and Practice, and was subsequently opened to non-STC- 
IDEC staff, has been described and discussed in more detail elsewhere [JLS86]. This 
programme was instrum ental in bringing to light many of the problems discussed and 
developed in this research, and has recently been replaced by an MSc in Software Engi
neering, which has been designed in the light of many of the discussions carried out in 
this document. FuU details of the MSc scheme are available elsewhere [Hat89], but we 
win briefly discuss how the theory building view developed in this thesis has been used 
to orientate the design of this m ajor scheme of study.

The author was fortunate to be allowed to play a significant pai't^ in the design of 
this scheme, and very few constraints were imposed. Consequently the whole scheme 
could be oriented by the proposed model. In particular, the control exerted by the 
curriculum could be reduced significantly to  encourage students to  take responsibility 
for their learning. If control is to  be relaxed, however, it is crucial th a t students are in 
a position to  learn from their experiences, rather than  flounder in the  mindpool. Perry 
suggests th a t we can consider five stages of intellectual development as pertinent to 
students in higher education [CH82]:

1. “Students see the world in polar term s of terms of right vs wrong. Absolute right 
answers exist for everything. Problems are solved simply by following the word of 
an authority.”

2 . “Students begin to perceive alternative views, as well as uncertainty amongst Au
thorities, but account for them  as unwarranted confusion among poorly qualified 
Authorities.”

3. “Students acknowledge th a t diversity and uncertainty are legitimate, but stiU tem 
porary, in areas where Authority “hasn’t found the answers yet” . They seek relief

^The author chaired the development committee.
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in liard sciences and m athematics which seem better understood by Authority.”

4. “Students perceive legitimate uncertainty, and therefore diversity of opinion, to  be 
pervasive. They are suspicious of any evidence or authorities opinion.”

5. “Students perceive all knowledge and value, including au thority ’s, as contextual 
and relative.”

The admissions policy for the designed scheme was intended to  ensure th a t students 
had reached level three or above, consequently the decision was made to  allow them  to 
have complete control over both  the process and content spirals of their education. The 
constraint imposed by the award of an MSc. was overcome by the “teacher-as-senior- 
researcher” agreeing a programme of study with the student. This programme, proposed 
by the student, identifies aims, objectives, and assessment tasks to  show th a t the objec
tives have been met. It also identifies resources th a t the student requires to  complete the 
programme, including access to  pre-defined courses, library facilities, equipment, and so 
on. In essence, the spirit of the scheme is th a t of an MPhiL, where the emphasis is on 
personal research and development rather than contributing to the mindpool.

It was agreed, however, th a t such a radical approach might well leave the students 
fioundering, and so a standard programme was designed to act as a starting  point from 
which the students could deviate. This programme also served to identify a  set of eight 
courses th a t were felt to  be sufficiently fundam ental to  be useful to  students in designing 
their own programmes. These courses were based entirely on the theory building view 
of software design, and comprised:

T h e o rie s  a n d  F o rm a lism s: This course serves to  introduce the theory building pro
cess together with a discussion of the rôle of formalisation. It also introduces a 
collection of m athem atical topics, useful in model-based theory presentations, in a 
way th a t is described later.

T y p e s  a n d  S ta te  in  C o m p u ta tio n : This course develops the idea of using laws of 
consequence and coexistence in presenting theories, and discusses styles of specifi
cation with the proof obligations th a t they entail.

C o m m u n ic a tin g  S y s tem s: The idea of laws of interaction is introduced, and the inter
pretation of such laws in system design, together with examples of communication 
primitives in implementation environments th a t provide models of these laws, is 
explored.

P e rfo rm a n c e  a n d  R e lia b ility : Here we deal directly with aspects of the target envi
ronments th a t give rise to  positive design heuristics, and also discuss the possibility 
of incorporating these features into the theory itself.

F itn e s s  fo r P u rp o s e ;  This course deals more fully with the concept of refutation of 
a phenomenological theory, and what would make our theories fit for purpose. It 
also discusses the relationship between fitness for purpose and correctness.

187



www.manaraa.com

S o ftw a re  D e v e lo p m e n t S tra te g ie s : Here we explore the strategies open to  the engi
neer in constructing and transforming theories. In particular, the rôle, uses and 
dangers of proprietary methods are discussed.

H u m a n  F a c to rs  in  S o ftw a re  D esign : At this stage we acknowledge more fuUy th a t 
the design of software systems is usually carried our for humans and by humans. 
This course discusses topics such as project management, contractual boundaries in 
law, ethical considerations and hum an computer interaction, in ways commensurate 
with the m aturity  and experience of the students.

K n o w led g e  a n d  D a ta  R e p re s e n ta t io n  in  C o m p u ta tio n : Many application domains 
now exist in which problems give rise to  large amounts of persistent data. This 
da ta  is often structured in quite complex ways to capture existing theories, such as 
those inherent in expert systems or tem poral databases. This course seeks to unify 
the approaches in use in these application domains around the them e of theory 
building.

This design illustrates how our model and discussion has served to  influence curriculum 
design in both process and content parts of the double helix, and how it can act as a 
structuring mechanism for a  whole scheme of study. The reader is invited to  distin
guish the coverage of this m aterial, which is reasonably familiar, from its structure and 
motivation, which are unique.

In itia l U ndergraduate E ducation

An assumption distinguishing initial education from continuing education is th a t stu
dents embarldng upon the la tte r are likely to  be at earlier stages of intellectual devel
opment. This is a gross generalisation, of course, particularly with policies of widening 
access to  higher education, but this assumption is implicit in most scheme designs, and 
underpins the discussions th a t follow. Given this assumption, it is not reasonable to 
expect undergraduate students to  take the same degree of responsibility for their studies 
as continuing education students, for they rely too much on authority. Consequently 
teachers and curriculum designers need to lay down a fairly specific programme of study 
for the  earlier stages of the scheme, whilst a t the same time not inhibiting the student 
from achieving liigher levels of intellectual development. It might be argued, of course, 
tha t we should not attem pt to teach Software Engineering to  students who are still at 
such early stages of intellectual development, but should wait until postgraduate courses. 
Richardson provides an answer as to  why this is not really an option:

“The more im m ature the discipline, the more m ature the practitioners or 
learners of th a t discipline m ust be. Unfortunately, the reality is th a t we can
not wait for software engineering. We can neither only have m aster’s level 
people able to speak confidently about software engineering topics nor can
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we wait for the discipline to  m ature enough to  be easily taught to  undergrad
uates. The future has been forced upon us by advances in other areas and 
we cannot look the other way.” [Ric88, pages 127-128]

In 1990, the BSc in Computer Science at Hatfield Polytechnic was reviewed to  its seventh 
set of regulations^ [BSC90]. In this section we wiU discuss the first year courses from 
th a t revised scheme, and how they conform to our theory building view. Expressed in 
theory building term s, the first year of the scheme seeks to  develop the students’ skills 
in the following aspects of Software Engineering:

• selfconsciously designing solutions to  problems.

• developing theories.

• formalising theories, identifying and discharging proof obligations.

• expressing theories in programming languages in a form suitable for execution.

• understanding the implications of the underlying technological platform for the 
positive heuristic of the research programme.

To achieve these aims, there are four courses th a t run throughout the year: Problem 
Solving, Formal Notations and Models, Programming, and the Organisation of Computer 
Systems.

Problem  Solving

Traditionally, problem solving is taught via the medium of the discipline being studied. 
This means th a t students can only tackle problems up to  the current limits of their 
expertise in the discipline. Moreover, this can lead to a  very false impression of the 
processes involved, as Bentley has noted,

“After 16 years of school, the average college senior has the mistaken notion 
th a t all problems come neatly packaged. Of the many wounds inflicted by 
modern education, this is one of the most tragic: pre-school children come 
up with wonderfully creative solutions to  problems, while graduates seem to 
have acquired tunnel vision.” [Ben88, page 4]

Students do not need to  adopt a selfconscious a ttitude to  problem solving when it is 
presented in this way, for the method of solution is inherent in the problem context. Such 
tasks are useful, of course, in providing validating events to  consolidate the constructs 
of m aterial introduced, but they do little to  help the higher-order problem solving skills, 
such as the selection and evaluation of methods, languages and tools.

^The author was Assistant Head of Division, with special responsibility for subject development, while 
this review was taldng place.

189



www.manaraa.com

Tlie Hatfield Polytechnic problem solving course was designed to  tackle precisely this 
ai-ea^. It does not set out to develop methods or notations suitable for any particular 
aspect of Softwaie Engineering, although some may be encountered in passing. The 
course involves students participating in a  number of experiments, which they carry out 
largely using existing skills and knowledge, bu t which they write up in a reflexive m anner 
in a  laboratory book. Thus they are, in a very real sense, experimenting on themselves. 
The problems tackled during the first half of the course have no obvious (to  the student) 
link to  topics encountered in other courses. Typical problems include egg-races, system 
improvement tasks (such as increasing traffic flow around the Polytechnic campus), and 
pencil and paper puzzles. Most tasks are undertaken in groups, thus developing rôle 
playing skills and also those necessary for making theories explicit and defending them 
to  peers. Thus exploratory, informative, and scientific discourse are all inherent from 
the outset of the scheme, and one type of discourse is not given an artificially elevated 
status.

We would argue th a t one of the advantages of this approach is th a t students develop many 
of the vital constructs for system design without them  becoming impermeably linked to 
ephemeral technological details. Students learn what it means to  analyse and specify 
systems, design solutions, defend their designs, and so on, but without the limited vision 
often promoted by systems analysis and design courses, programming courses, or even 
formal methods courses. They also learn th a t designs come from people, not problems, 
and come to recognise their rôle in the process. As Slaughter has noted,

“such [self-reflexive] methodologies and approaches support views of the world 
in which we recognize our embeddedness in a series of contexts. We begin to 
see only too clearly th a t our understanding of ‘reality’ is dependent upon the 
quality of the models used. Problem-solving is no longer about about making 
small, isolated changes. It is about participation and intervention in m utually 
interacting webs and processes. In this sense, solutions tend not to  be ‘righ t’, 
but elegant. And, as Fisher notes, ‘the contexts of elegance are dependedent 
upon the illumination th a t enables us to  see them ’ [Fis87, page 11]. As ever, 
the threads which create the world lead back to us.” [Sla89, page 265]

By designing, and discussing, a variety of solutions to  problems, and the rationale behind 
them , students come to  realise th a t software engineering design is not a  deterministic 
activity, but one where personal constructs make people see problems in different ways, 
leading to  different solutions. This also motivates the need for presenting designs in ways 
th a t can be discussed at a level above these personal constructs, using accepted third 
world objects taught through formal education, so th a t they will be similarly construed 
by all participants.

^This course was originally designed by John Sapsford-Francis and the author, but the author has 
played no part in subsequent developments of the course.
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It is interesting to  note th a t this course is viewed as very “difficult” by the students, 
in spite of the lack of technical content, for they find the task of producing reflexive 
laboratory reports very hard, being unused to  having to  explain, analyse and justify their 
methods, rather than  accepting them  on authority and applying them  to  ro te problems. 
Once they manage to  overcome this difficulty, however, we hope th a t the students are 
developing the constructs necessary for the confidence and willingness to  accept the loss 
of innocence.

Form alisation

It is im portant to  make the point tha t when we teach formalisation we are not teaching 
m athem atics, even applied m athem atics, in the traditional sense. This point is also made 
quite frequently amongst teachers of m athem atical modelling, which is surely formalisa
tion by another name. Bkouclie sums this up, when he writes,

“M athematics is proposed to  physicists exclusively as a tool and physics is 
proposed to students of m athematics as a  series of applications of m athem at
ical theories. In this narrow perspective, the problem of the use of m ath
ematics (mathem atics as a service subject) becomes artificial; m athematics 
is deprived of its actual and historical connection with scientific practice.” 
[Bko89, pages 49-50]

If we are to avoid students seeing the use of mathematics as an artificial device, we must 
encourage them  to see formalisation not simply as the application of an existing body 
of m athem atical knowledge to  well-understood problems, but as part of the process of 
understanding the problems themselves. This way of viewing m athem atics runs contrary 
to th a t of many m athematicians, however, who subscribe to  the “pure” and “applied” 
partitioning of the subject, and also th a t of many “users” of m athematics. Fisher sums 
this up very neatly when he writes

“Those [mathematicians] who construct the model emotionally are disturbed 
by the appearance of new aspects or even contradictions. They want to  be 
told once and for aU what people want so they can concentrate on solving 
the problem. In contrast to  this traditional orientation the m athem atician 
[who is oriented towards building a description of the problem] understands 
himself as an explainer o f the problem, who helps people to  articulate their 
imaginations, who points to  alternatives; sometime even as somebody who 
slows down the process of solving the problem.” [Fis89, page 19]

We would argue th a t it is this view of mathematics and formalisation th a t needs to  be 
taught to  students if we are to  promote the theory building view. Students m ust be 
encouraged to break away from the notion of mathematics as a medium for scientific 
discourse alone. Simply extending their constructs so th a t they also see it as a medium
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for informative discourse is not sufficient, for they must also come to  see the rôle of 
mathematics in exploratory discourse. This is certainly not the way th a t mathematics 
is usually presented to  students by most teachers of the subject. Mason observes th a t

“M athem atical thinking is like going on a voyage. Doing m athem atics with 
others involves voyaging together, with all the agreements and disagreements 
of fellow travellers. W riting up m athematics is like reporting back, or writing 
a travelogue. Teaching mathematics involves being both a tour guide, and 
an old hand listening critically to  fresh reports.” [Mas87b, page 77]

He goes on to say elsewhere, however, th a t this is not an accurate reflection of current 
practice:

“Most teachers and students . . .  think th a t the formal language is the m ath
ematics. . . .  W hen this language is taught to  students, a ttention is drawn to 
the procedural, syntactic aspects, because outer behaviour is desired (solving 
typical problems), visible and accessible. Thus there is an assessment-induced 
thrust away from meaning towards mechanical m anipulation.” [Mas87a, 
page 209]

The approach adopted to  teaching formalisation at Hatfield is th a t m athematics must 
be presented not as a static body of knowledge but as a hum an process. Students do not 
simply need to  learn m athem atical knowledge and methods, but need to  learn to  par
ticipate in the m athem atical process itself. This is not only an educational perspective, 
however, but it is also indicative of a  shift in the status of m athem atics itself, analo
gous to  the recent trends to  re-introduce the scientist into science. This idea has been 
developed elsewhere [Loo90a]. Lakatos, instrum ental in bringing about the re appraisal 
of science, also proposes this view of m athematics [Lak76] [Lak78], Ernest suggests tha t 
adoption of this new status of m athematics serves to make it more accessible to  students, 
rather than  making it more difficult.

“Having carried out their programmes, but having failed to provide certain 
foundations, the traditional philosophies of mathematics [logicism, formalism, 
intuitionism and platonism] are now spent forces, which do not offer tenable 
accounts of the nature of m athematics.

The new wave in the philosophy of mathematics has set a new agenda for 
discussion. No longer is it sufficient to consider only the immutable objects 
and tru ths of m athematics, th a t is, its products. The hum an context m ust be 
seen as a  legitimate and essential contribution to the Philosophy of M athe
matics. . . .  But this perspective, which includes the nature of m athem atical 
activity, the plurality of m ethods, the rôle of error and the negation of tru th  
comprises aU the factors which most potently contribute to the pupil’s view 
of m athem atics.” [Ern89, page 559].
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Clearly this approach fits very neatly with our model of system design, for we want to 
develop students’ skills in constructing theories using formal modes, rather than  simply 
skills ill using existing formalisms. We also want them  to become selfconscious partic
ipants in the m athem atical process, not simply adept in the mechanical application of 
standard results [Loo90b] [LM88]. This does not imply th a t we should ignore standard 
results and existing knowledge, of course, for our students will need to build on these if 
they are to  operate efficiently, and they also provide a common foundation for discourse 
between engineers. The challenge is to  incorporate the traditional m aterial with the 
process driven view of m athematics.

One way to  achieve this is to  teach formalisation by developing theories of m athem atical 
objects, th a t is, to use m eta-m athem atics. The Formal Notations and Models course® 
begins with a  discussion of what it means to  be “formal” , and an introduction to formal 
languages and systems. This gives rise to  another advantage of the approach, namely 
th a t the close connection between languages and machines can be introduced very early 
on in the scheme, so th a t the students view programming as just another example of 
formalisation. Tools are used wherever possible to  incorporate formalisation into the 
computing culture, so th a t students do not see an artificial divide between “practical” 
activities on a machine and “theoretical” activities using pencil and paper. Yacc and 
lex, for example, are used in week one, allowing the students to  experiment with formal 
grammars. This also serves to  demonstrate th a t formalisation can lead to  simpler solu
tions, as well as causing ex tra work. Formal languages and systems are both introduced 
using abstract examples to avoid undue interference from existing constructs, although 
we rapidly move on to providing semantics for the examples and also expressing familiar 
examples formally, thus developing the range of the constructs.

Once students have achieved some understanding of formal systems, we introduce prepo
sitional and predicate calculus, and the notion of a  formal theory presentation is dis
cussed. At this stage, formalisation of mathematics itself begins. All students will have 
met sets before (a self-study package is used to ensure a certain level of background 
knowledge), so we now apply the permeable constructs of formal systems to  the task of 
constructing a set theory. The task is explored, but eventually ZF set theory is presented 
as the theory we will build upon. This involves discussing what properties we expect 
sets to have and how these might be expressed, thus set theory is seen not as a  state  of 
knowledge representing the emergent properties of sets, but as a designed theory. This 
discussion inevitably leads into consideration of related objects such as bags and lists, 
which the student will also be meeting in the programming course.

W hen sets have been formalised, model-based theories of functions, relations and se
quences are presented. This process is remarkably simple, for the students can see tha t 
these are just more examples of theories. They may be overwhelmed by notation, but 
they seem to accept the im portant issues very readily. Moreover, because they have been 
encouraged to see theories as artifacts th a t have been designed, rather than  God-given

’This course was designed and taught by the author.
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properties th a t emerge, they also seem to  accept th a t alternative theories are to be ex
pected. The fact th a t m athematicians tend to  consider only to ta l functions as functions, 
and use functions of several variables rather than  curried forms, does not seem to confuse 
them  as one might expect. This is crucial, for it suggests th a t the students have reached 
stage 5 in Perry’s stages of intellectual development in very quick tim e (within a term  
of study). This is evidence only within a very restricted domain, of course, but it is a 
domain in which authoritative answers usually predominate, and hence we might expect 
the lower stages to  persist longer.

The next part of the course is devoted to  developing the students’ abilities in constructing, 
and using, theories to  act as specifications. There are two possible ways forward here: 
we can either encourage the perception of problems in terms of constructs the students 
already know how to  formalise, or we can attem pt to  formalise the constructs th a t seem 
to be suggested naturally by the problem. The former leads us towards model-based 
specifications in Z, for example, whilst the la tte r leads us towards a more primitive 
specification, typically using an equational predicate logic. Since we want our students 
to be seKconscious, we discuss both  methods, but emphasis is placed on model-based 
techniques as these also develop fluency in constructs which the student wiU find useful 
in social processes. A small amount of time is also spent developing a formalism for 
communication and concurrency, CCS. This typicaUy causes problems because students 
have usually developed the notion th a t computers “do what they are told” , but this 
construct is not sufficiently permeable to admit non-deterministic behaviour. They find 
it very hard to  understand th a t we can have a theory of behaviour which is precise, 
but from which we cannot predict behaviour. It is im portant to  realise th a t this is not 
a problem of formalisation, of course, but the emergence, through the formalism, of a 
property of the system under consideration. It is often said th a t “formal m ethods” are too 
hard to  teach to first year students: we would argue, however, th a t the difficulty is simply 
a reflection of the fact th a t we cannot so easily wave our hands and avoid discussing the 
difficult facets of our problems. We can, of course, establish simple problems in which 
these difficulties do not arise. To argue from this th a t formal methods are only useful 
for trivial problems, whereas informal approaches allow us to  tackle real problems, is 
fundamentally dishonest: informal approaches simply allow us to  avoid tackling real 
problems more convincingly.

This theory building approach to  teaching mathematics itself has been discussed at 
greater length elsewhere [LooQOaj. Indeed, when the author first presented these ideas 
[Loo84], albeit without the rationalisation provided by the model, the reaction was th a t 
only the better students would be able to  cope [Juk85]. It is im portant to  note th a t 
this is not the case, for it has also been used to  great effect with a  group of 180 HND 
students [LB91]. In addition, a  textbook has been written to support this process, as 
existing books were found to  run counter to the approach [WL88].

The final component of this course is to  develop the students’ appreciation of the rôle of 
proof in system design. Because the m aterial has all been presented via formal systems 
and theories, proof is seen as a  natural extension to  exploration and specification, but
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some extension of constructs is needed to  allow discussion of proofs of correctness. A 
more detailed account of the view taken of correctness, and how it relates to  the construct 
of fitness for purpose, has been presented elsewhere [Loo91].

Program m ing

Teaching programming using the theory building view is a  delicate operation, for we 
would argue th a t it develops poor constructs if students are encouraged to  present the
ories directly in terms of programming languages. This is the approach taken in many 
textbooks, some of which are even entitled “problem solving with xxx” . One solution is 
to delay the teaching of programming until after the students have developed the requi
site constructs for theory building. There are two drawbacks with this approach. First, 
students, employers, professional bodies, and many other interested par ties, have expec
tations tha t programming with “real” languages will form part of the initial teaching 
of Software Engineering. The argument th a t teaching formalisation actually develops 
the required constructs more effectively than  using a language such as Pascal or Ada is 
difficult to  make persuasively in an atmosphere where “formal m ethods” are frequently 
seen as part of an opposing paradigm, and where students expect to  carry on an existing 
paradigm from school or college. The second problem is th a t the positive heuristics for 
the research programme in our design process come largely from an understanding of the 
facilities available in a typical target environment.

The solution th a t has been adopted a t Hatfield in our programming courses for many 
years is to  teach through a “real” functional language®. This means th a t students are 
learning to  formalise theories in a  way th a t corresponds directly to  the sort of constructs 
they are encountering in the Formal Notations and Models course. It is incidental tha t 
the notation used permits execution of particular schemas on a real machine. This 
approach supports the idea tha t the students retain responsibility for their programs: it 
is their theories th a t are being presented, rather than  the theory being some emergent 
property of the code produced. We would argue tha t teaching programming initially 
through a real procedural language, with its loss of referential transparency, makes this 
very hard to  achieve, for the programs are hard to  reason about, and consequently their 
status as theories is difficult to  appreciate. Lapalme and Cantray, for example, present 
a  very different view of programming from the one outlined here, th a t suggests they are 
aiming at developing very different sorts of constructs in their students. They present 
programming as if it comprises experiments with a machine to  discover what a  program 
does:

“As Ada^ is one of the first widespread languages to provide a standard  way

®This approach has been developed over a number of years by various members of staff, but has 
primarily been promoted by Bob Dickerson. The author claims no credit for this approach.

^The author cannot resist including the delightfully ambiguous quotation from Ghandok: “Introducing 
Ada at a late point in the curriculum can lessen its impact on shaping the behaviour of the student, as 
many bad habits are already well established by this point”! [GG88, page 200]
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of describing parallel activity, we tried to  use it in a  course, bu t we soon 
realised th a t it was impossible to  debug those systems short of doing by hand 
many output statem ents giving an idea of where the activity of the program 
is taking place. The output statem ents have the unfortunate drawback of 
obscuring the initial code. . . .  Experienced programmers do not need all tha t 
information, but novice ones do.” [LC87, page 185].

We would argue th a t students should never never be encouraged to  write programs 
where they do not “have an idea of where the activity of the program  is taking place” ; 
the program represents their theory, not an object th a t has mysteriously appeared from 
nature. To recommend teaching in an environment where programs can be explored 
to  see what they mean would suggest th a t students are not being encouraged to  take 
responsibility for their programs, but to  trea t the results of their “designs” as objects 
of empirical study. This is not to  say th a t the environment should be devoid of useful 
feedback, of course, for students need to  be able to check the validity of their theories 
and also th a t their choice of presentation causes the predicted machine behaviour. The 
emphasis should be on prediction and attem pted refutation, however, rather than  on 
observation and induction.

One of the objections sometimes raised against this approach to  teaching programming is 
th a t students need to  develop competence in “real programming” . Experience suggests 
th a t this is not a problem, for the construct of programming developed is sufficiently 
permeable to admit other styles of programming to  its range. Indeed, we would suggest 
th a t it may be a more efficient way of teaching a procedural style than  approaching it 
directly.

One of the advantages of teaching programming in this way is th a t it allows us to  de
velop the constructs without binding them  inexorably to the operational semantics of 
some machine. Thus the concept of programming can be broadened to  include theory 
building, rather than  being constrained to  forming part of the transform ation process. 
This appears to be the suggestion being made by Dijkstra in the 1989 debate on Com
puter Science Education [Dij89], but strangely Dijkstra goes on to  advocate the use of a 
simplified procedural language. We would argue th a t this is unnecessary, and, given the 
existing constructs of many students entering higher education, unhelpful: a  point also 
made by Scherlis [Sch89a], who notes this seeming inconsistency of D ijkstra’s arguments.

C om puter System s

Teaching a computer systems course alongside the three courses outlined above poses an 
interesting challenge. A traditional approach is to  teach the m aterial through a simple, 
but realistic, processor and its machine code. This does not fit well with the teaching 
of functional programming as a first language, however, for it means th a t students are 
developing many of the constructs of procedural programming for the  first time in a 
machine code, which is not supportive of the theory building view.
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The approach adopted at Hatfield® is to  introduce computer systems via finite state  
machines and pushdown autom ata. Tliis is a  natural extension of the formal language 
m aterial in the Formal Notations and Models course, and the students are not encour
aged to  separate the two courses a t this stage. Once the idea of a machine and stored 
program  have been established, Landin’s SECD machine is then introduced to  illustrate 
a computer system of sufficient power to  support the functional programming they are 
currently learning. This allows the discussion of a number of im portant topics, but within 
a very simple model. Stored programmes, memory, param eter passing mechanisms, sav
ing and restoring environments, compiling, and many other issues can all be discussed 
without the clutter often associated with a  “real” machine. This machine is also used to 
highhght the functional units th a t may be helpful in implementing a hardware system, 
and these units are discussed and formally described, with their theories being trans
lated into hardware configurations. Thus the theory building view is supported, and 
used, in hardware design as well as software, which serves to  reduce the problem of an 
artificial divide. The course continues in a more traditional vein, as the functional units 
are configured to  support more conventional languages.

8.3 Sum m ary

In this chapter we have discussed the application of our model to  curriculum design, in 
the widest sense, and also provided an overview of some experiments th a t have been 
carried out in a realistic teaching environment.

®The author designed and teaches this course.
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C h a p ter  9

C onclusions
W o one believes an hypothesis except its originator, but everyone believes 
an experiment except the experimenter”

W. I. B. Beveridge

Keane suggests tha t

“There is no real beginning to  a  piece of research (especially doctoral research) 
but rather a set of false starts  and dim gropings; what we may choose to  call 
the middle is a complex tangle of issues and cross connections, iterations, 
blind alleys and mistakes; and the end is not an end but a  frozen frame of a 
current set of ideas, which continue to  develop.” [Kea88, Page 9]

Viewed in this hght, the previous chapters of this document have presented the frozen 
frame. The purpose of this chapter is to  stand back from the frame and evaluate the 
to ta l picture. Ideally we would s ta rt this discussion by considering the extent to  which 
our prim ary aim has been met. Since this aim involves increasing the reader’s under
standing of the software design process, the extent to  which it has been m et is difficult to  
gauge without detailed psychological testing of each individual: and this was not deemed 
possible. We can, however, discuss the extent to  which we have met our subsidiary aims, 
which we wiU do in the first section of this chapter.

We can also reflect on the research m ethod, discussing the problems th a t were encoun
tered and how, with the benefit of hindsight they might have been avoided. Such a 
discussion may be of value to anyone seeking to  build on this research programme, or 
carry out a similar one. This comprises the second section. Similarly, in section three, 
we will discuss the presentation of the thesis itself, analysing the document as a piece of 
discourse and suggesting improvements th a t could be made if more time were available. 
Finally we will discuss a number of future research programmes th a t could usefully be 
built upon this one, including a few for which the author has already drawn up proposals. 
This cannot be a definitive fist, for virtually all current research in computer science and 
software engineering can be seen as m otivated by our analysis, so we wiU restrict a tten 
tion to  areas th a t currently seem to  be neglected, possibly due to  their interdisciplinary 
nature.
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Before doing so, however, let us develop a simple model, or rather an analogy, of this 
picture. Consider the problems arising when a massive, complex object appears one day 
in a  valley surrounded by liiUs. The local inhabitants are curious, and understandably 
want to discover more about this strange object. They can go up to  it, but they have 
no way of interpreting what their senses detect in any holistic way, so they climb one of 
the hhls for a  better overall view. This hill offers a restricted sight of the object, and 
from only one vantage point, so they move onto another hiU offering different restrictions 
and a new vantage point. There comes a stage when one of the inhabitants believes he 
understands the object well enough to sketch out a  model. Armed with this sketch, the 
locals can climb new hills, seeking verification and refinement. They can also revisit the 
original hills, where they wiU doubtlessly re-interpret many of the glimpses they have 
of the object in the light of the model. They can also use this model as the basis for 
their discussion of the object, for it provides common ground, and they may use these 
discussions as the rationale behind certain actions.

In this research programme we have climbed the hiUs provided by a num ber of academic 
disciplines and their associated bodies of literature in the hope of catching revealing 
glimpses of software engineering design. We have constructed our model, and reported 
back on a few of the ensuing discussions and actions. Chapters Two and Three of this 
document record our glimpses, Chapter Four presents a model. Chapters Five, Six and 
Seven seek out new vantage points, and revisit some old ones, in order to  fill in some 
details th a t are obviously missing. Chapter Eight recounts some of the discussions, and 
ensuing actions, th a t have resulted from our developing model. Chapter One represents 
the briefing session tha t set out the challenge facing us, and this chapter is to be a reflec
tive discussion as to  how well these challenges have been met, together with identification 
of areas th a t still need exploring, and also guidance for subsequent explorers to  enable 
them  to avoid some of the pitfalls and wasted trips th a t befell us on our journey.

9.1 M eetin g  th e  o b jectiv es

There were three subsidiary objectives identified for this research programme; the es
tablishing of a  framework for the discussion of the software engineering design process 
(finding the hiU to  climb and recording the views), constructing and refining a model of 
the process (bringing together the views and seeking out missing detail), and illustrating 
how the ensuing discussion can be utilised in curriculum design. We will consider each 
of these in turn.

E stablishing a fram ework

This objective proved particularly difficult to  meet, due largely to  the lack of a  philosophy 
of engineering, which it had been anticipated would serve to orientate the search. No 
claim is made th a t the framework established is particularly good, although it did serve 
its purpose in supporting the initial construction of our model. The decision to  centre
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discussion on Popper s philosophy of science proved crucial, for it enabled the subsequent 
expansion of the framework, as our model developed, to  include, for example, the works 
of Kuhn, Lakatos, Suppe and Kelly. The (embryonic) philosophy of technology and 
design also contributed significantly, particularly in establishing the idea th a t the software 
development process must be one of selfconscious design. The relationship between rules, 
theories and laws is also crucial, for it leads to  the ideas of theory construction and 
schema implementation found in our model. Kinneavy’s notion of the three kinds of 
reference discourse was also vital, for it provided the framework to  reconcile exploration, 
specification, and explication, all of which are crucial in the design process.

These examples show the value of the eclectic approach, for no reference to  these ideas 
has been found in the Software Engineering literature. The most disappointing aspect 
of the work on establishing a framework was the failure to  integrate the psychology of 
problem solving to  any great extent. W ith the benefit of hindsight, and an increased 
understanding of the discipline, the reason for this is easy to see; the research was 
expecting more from the discipline than  it was able to  offer. In particular, the desire 
to be scientific has led to psychologists adopting a very fragm entary approach, whereas 
the assistance we required was aimed at unification. In retrospect, it might have been 
more sensible to use KeUy’s Personal Construct Theory earlier, when establishing the 
framework, rather than using it in i t ’s dual rôle later. This would have been fraught with 
different problems, however, for PO T poses an interesting dichotomy for the researcher: 
either we accept Kelly’s theory as regnant in some absolute sense, in which case we are 
denying th a t all constructs are our own, or we reject his construal, replacing it by our 
own interpretation of the theory, in which case our discourse must be subjective. The 
author was unprepared to do the former, for this would have m eant establishing Kelli an 
constructs as pervasive throughout our framework; and not confident enough to  do the 
latte r, for a doctoral thesis th a t is unashamedly subjective seemed to  fly too much in the 
face of convention.

C onstruction of the M odel

The objectives of constructing a model of the software design process appears to have 
been fully m et. The model is not in any sense complete, of course, but it has proved 
adequate for our intended purpose, and seems to  be sufficiently robust to  support further 
developments. The proposed model has the virtues of simplicity and, in the au thor’s 
opinion, a  certain elegance. The use of theories as the unifying feature perm its discussion 
of many facets of the design process in ways th a t cut across existing divisions. Soft and 
hard topics, such as requirement analysis and proofs of correctness, can be reconciled 
within this model without the need to  adopt particular paradigms such as joining the 
formal methods camp or the CASE camp. Thus the model may serve to  reduce hostility, 
but without removing aggression.

The model is also very useful in establishing links between fitness for purpose and cor
rectness, and between testing and proofs. Notice th a t we have not sought to abolish
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testing, but to  elevate it to  its proper status. We have, however, sought to  show ways in 
which testing may be relocated and reused.

One possible disadvantage of adopting the term  “theory” is th a t it may be seen as 
neglection of “practice” , a reaction th a t arises as a result of an individual developing a 
“theory/practice” construct. Such a reaction has already been noted on occasions when 
the model has been used in conference presentations. Hopefully a  careful consideration 
of the  model wiU show, in a  non-threatening way, th a t such a  construct is untenable or, 
a t least, unhelpful.

A significant result has been the identification of the semantic conception of theories as 
a useful body of knowledge in which to  interpret many aspects of system design. Clearly 
more work needs to  be done in making the links explicit, but if this can be achieved there 
is the possibihty of a m ajor area of philosophical literature becoming directly relevant to 
Software Engineering. In particular, the similarities between Suppe’s three kinds of laws 
and the three types of specification paradigm identified by Cohen and P itt stand out as 
requiring deeper analysis.

The use of Lakatos’s idea of research programmes is also significant, for it offers a  way 
of talking about the progress of a single project and the transition between projects. 
It also permits separation of different kinds of requirements into the hard core and the 
protective belt.

One possible deficiency in the model is its failure to provide a more concrete view of 
structuring presentations, and the proof obligation this entails. This is not surprising, 
for the subject is very much a concern of current research in Software Engineering, but 
only within particular paradigms, so expecting any deep generalisation is over optimistic. 
The author contemplated introducing category theory to  discuss these problems, but 
decided th a t this would serve to reinforce the (false) impression th a t theory constructs 
and formalisations were one and the same thing, without contributing much to  the debate: 
we can only interpret the categorical presentation if we already have an interpretation 
of the problem.

U tilisa tion  of th e  m odel

The author considers th a t this objective has been fuUy m et, although this is difficult to 
dem onstrate through this document alone. Perhaps the best evidence has been provided 
through the use of the model to  design and teach a formal notations and systems course 
to one hundred and eighty H.N.D. students. This has resulted in a course which is well 
regarded in a number of senses: the students like it (in spite of being a m athematics 
course), staff are keen to  teach on it (although it is a  lowly first year H.N.D. course), the 
BTEC m oderator considered it an excellent course, and visiting H.M.I. were also very 
impressed by the level and standard of work th a t the students were achieving. We cannot 
claim th a t the model deserves aU the credit for this, of course, for m any factors have 
played a part, but the author believes th a t the research undertaken in this programme
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played a significant part in bringing this about.

A significant result arising from this objective is the realisation th a t the problem was 
actually phrased in the wrong term s a t the outset. We should have been asking what we 
could do to  help students to  become better learners, rather than ourselves better teachers. 
It is interesting th a t this observation has arisen from consideration of the content, rather 
than  process, of the curriculum.

9.2 R esearch  M eth o d

This research programme has proved extremely difficult to  coordinate and control. The 
eclectic nature of the research has led the researcher to climb many unfamiliar hiUs, and 
when he has reached a vantage point, to  interpret the object of interest in the light of 
the disciplines surrounding him. Goguen observes that

“To address such issues it is not necessary to  be an ‘expert’, th a t is, have 
everything already worked out. Indeed, it is not even desirable, because 
genuine meaning arises through uncertainty and questioning, even through 
confusion and error. It is necessary to  enter into a  dialogue in order for tru th  
to  emerge from concealment.” [Gog90, Page 25]

W hilst expertise may not be necessary in term s of depth of knowledge, the author would 
suggest th a t what is required is possibly a deeper form of understanding: an understand
ing of the disciplines themselves and the organisation of their literatures. Two examples 
illustrate this point admirably. F irst, the philosophical literature has to  be read in a 
very special way; it is steeped in background and the novice reader m ay weU form the 
impression th a t the only way to  understand a text is to  follow every reference back to 
its source. This rapidly explodes into an impossible task. The trick is to read the liter
ature a t a  number of levels, first forming some idea of the context in which the author 
is writing, then extracting the main points, and only seeking out a  detailed discussion 
when this has been done. The style of writing, however, often suggests th a t every word 
should be studied in its own right straight away.

Similarly, the problems encountered in unravelling the psychology of problem solving can 
be attribu ted  to  a lack of overview of the discipline. Its fragm entary nature was not ap
preciated until a substantial part of the research had been undertaken: as a consequence 
considerable time had been spent searching the literature for the reconciliation of ideas. 
This reconciliation, it is now being acknowledged, has been neglected by psychologists 
in favour of tightly controlled pockets of study.

A consequence of this need to  develop an overview of the disciplines visited before their 
literature became usefully available was th a t the  opening stages of the  research seemed 
very unproductive. Many items were studied th a t were of relevance to subsequent study, 
but of no direct relevance to  the problem in hand, thus the early stages were a devel
opment of method. In retrospect, some of these activities could have been simplified by
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seeking help from experts, but a t the time but at the time the researcher was unable 
to  phrase the right questions: asking for someone to “teU me about the philosophy of 
science” is actually the right sort of request, but such requests were always interpreted 
as “tell me about some of the details within the philosophy of science” .

Another problem with eclecticism is the feeling th a t you are visiting a hill on the off- 
chance th a t the view may be helpful. Sometimes, of course, someone points out the hiU to 
you, but often when you arrive you are unable to  interpret what you see. Consequently a 
number of disciplines and bodies of knowledge were explored th a t have not been included 
in this thesis either because the views they gave were too restricted to  be of much use, 
or because the researcher was unable to  interpret them  sufficiently to  incorporate them  
in the design of the model. Topics such as the philosophy of m athem atics and category 
theory were discounted for the first reason, the  use of anthropology for the second. Here 
we m ust acknowledge the rôle of accident, for had Suchman’s book on situated actions 
been discovered a year earlier this would probably have provided the insights the author 
needed to  make use of anthropology. This leads to  another problem, namely th a t it 
is not possible to carry out systematic searches for literature th a t “might cast a  light 
on the software engineering design process” . It was only with the development of the 
model th a t a  systematic approach became tenable. Expressed in Popper s term s, during 
the early stages we were forced to  seek knowledge with a bucket, collecting items as we 
chanced across them , but the design of our model allowed us to  switch to a  searchlight 
strategy. This suggests th a t the global strategy of establishing a framework, to  constrain 
the bucket filling, then designing a model to  focus the search was a good choice.

Another problem has been th a t the world does not stand still to  allow doctoral research 
to  be completed. This is true in all disciplines, of course, but when working on the cusp 
formed by the intersection of m any changing disciplines the problems are compounded, 
particularly when the research has to  be carried out part-tim e over a  num ber of years. 
In addition, the use of an authentic problem causes difficulty here, for the problem shifts 
as the researcher develops, although it was, to  a certain extent, frozen by adopting the 
three subsidiary objectives. It should be noted tha t this is not such a problem for the 
research programme per se, but of trying to structure it in a way suitable for a doctoral 
dissertation.

Authenticity has also caused a methodological difficulty with respect to  our third objec
tive, for every opportunity was exploited to  solve problems using the model. This has 
led to  the  model being used to  structure meetings, write papers and books, give lec
tures, design schemes and courses, explore teaching methods, and probably many other 
purposes. Reporting back on the third objective, however, would have been facilitated 
if some experimental control had been exercised. No apology is made for this lack of 
restraint, however, for the author considers the education of students more im portant 
than the simplification of the documentation task.

Perhaps the biggest problem, but one of the most exciting observations for the researcher, 
is the extent to  which the development of the framework and model have fed into the
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quest for a  suitable research method. It posed a problem, because the researcher started  
out with the traditional, but impoverished, view of science, in which “m ethod” gives 
rise to  “results” , rather than  being part of the results: thus the early stages of the 
research programme were decidedly threatening. It was exciting, however, because it 
blew apart the research programme in the most spectacular ways. Reading a research 
paper ostensibly on an aspect of teaching method, for example, could lead to the most 
powerful insights into requirements analysis, proof techniques, or the research m ethod 
itself. Thomas and Harri-Augstein sum this up when they write

“For us as researchers, the interaction between theory and m ethod is central 
to  what we do. Sometimes the idea system is ahead of the methods, and 
one looks around for (or is forced to  invent) methods th a t allow one to  op
erationalise one’s ideas. Then suddenly one finds oneself with methods th a t 
produce all kinds of surprising results th a t do not seem related to  the ideas 
th a t gave rise to  them . Often this is because one develops aU kinds of insights 
and skids in using the techniques.” [THA8 8 , page 98]

Even more exciting was the realisation th a t our research m ethod itself feeds back into 
the model: exciting, but very hard to  capture in a  sequential document of this nature.

9.3 P resen ta tio n  o f  R esu lts

The m ajor difficulty in presenting the results of this research is th a t these “results” 
represent a frozen frame of exploratory rather than scientific or informative discourse. 
This leads to a m ajor problem of honesty, for the author is confronted by the dilemma 
as to whether a true account should be given, or whether a  facade should be created 
to  present the researcher as more clever than  he really was. This is accepted practice 
in scientific discourse, but the author took the view th a t the objective of the research 
would be better met by an honest presentation, as this would involve the reader in the 
exploration process rather than  relegating him or her to an observer. In particular. 
Chapters Two and Three were developed as a resource upon which to  draw in building 
our model: they have not been rew ritten in the light of the model to  add resources th a t 
were missing or to remove those th a t were not used.

A similar problem arose in selecting the style of presentation. The norms of scientific 
discourse tend to discourage use of the first person. Philosophical literature, however, 
uses the first person quite hberally, as philosophers frequently present their opinions as 
such, and not as theories detached from themselves. The author decided to  adopt the first 
person plural to  encourage the view of exploration: “we will . . . ” having connotations 
of “let us agree to  . leaving the reader free to  rebel and write their own alternative 
versions. This seemed preferable to  “I think . . . ” which simply reports a  fact. This point 
was not made in the introduction as the author believes th a t such explicit references to 
the style of writing can detract from the pleasure of reading.
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Ill one sense, it is essential th a t the author should remain dissatisfied with a text of 
this nature. If it is to serve its purpose, it m ust provoke an aggressive reaction from its 
readers (its author included), otherwise it is inert, a  piece of history: and since, unlike a 
railway tim etable, it contains no “facts” or “tru ths” , it is useless. In another sense, the 
author is very satisfied th a t he is unable to  re-read this document without thinking of 
be tter ways to  express things, or of points tha t need clarification, or of further avenues 
to  explore. It is certainly the intention th a t the m aterial should continue to develop, 
subsets being extracted and presented for publication in different forms.

One interesting possibility would be the development of a hypertext version of this thesis, 
allowing the readers to  climb the hiUs as they wish, contributing their own notes to  the 
text not as marginal items but as valid contributions to  the main corpus. Possibly higher 
educational institutions should consider adm itting such works as doctoral theses, even if 
it would mean relaxing their regulations on binding!

A source of disappointment is th a t the author was unable to  capture the high degree of 
refiexivity inherent in this research. No way could be found of achieving this without 
either allowing the research m ethod to  intrude constantly into the tex t, thus creating an 
historical account of the programme, or developing several strands of discussion simul
taneously. Although some key points of refiexivity have been liighlighted, it m ust be left 
to  the reader to  imagine where others might have occurred.

9*4 F uture R esearch  d irection s

There are many possible research programmes th a t can be seen as emerging from this 
exploratory work. We wiU restrict attention to avenues th a t currently seem poorly rep
resented in current research, and suggest possible developments th a t could take place.

There is research th a t needs to  be carried out to increase understanding of aspects of the 
software design process. In particular, our model suggests th a t a  key question involves the 
relationships between the structures our theory presentations assume a t various stages in 
the process. If, as we have claimed, the structure of a specification has implications for 
the subsequent implementation structure, then clearly some research needs to  be done 
to  establish these relationships. Mitchell and Loomes, for example, have suggested tha t 
the structure of a  specification has implications for the m aintainability of the resulting 
system [ML91]. Refinement and correctness proof techniques exploit such relationships, 
but discussion is always carried out within a paradigm containing particular specification 
and implementation languages. The challenge is to generalise these ideas, possibly using 
Suppe’s notion of laws of coexistence, consequence and interaction. This work could 
also cover the proof obligations th a t arise out of different styles of specification, seeking 
to  integrate the work of Cohen and P itt into a philosophical framework. This research 
programme would allow us to substantiate, or deny, the claim we have made th a t it is 
impossible to present specifications in such a way tha t they do not contain implementa
tion details. Substantiation, moreover, would focus attention on the need to teach the
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design of specifications, rather than  suggesting th a t design starts  after specification, 
most life-cycles can be interpreted.

Another avenue to  explore is the use of KeUian techniques for requirements analysis. 
Clearly bipolar constructs will not be sufficient for presenting our theory, but possibly 
repertory grid analysis could be utilised during the early stages of analysis to  focus 
attention on those constructs the users consider im portant. This would be particularly 
useful in domains where articulation of the problem is difficult. Such an approach might 
lead to  the development of some of the computer-based tools currently used for grid 
analysis into tools for the initial stages of requirements capture.

A similar programme of research has been suggested by Michie^ for developing systems 
to emulate hum an experts, such as helicopter pilots. He suggests th a t autom atic rule 
induction could be used to infer theories th a t would explain actions of hum an experts 
by observing them  in controlled, experimental, situations. This idea has been tested 
in simple laboratory studies and has yielded encouraging results, but the issue as to 
whether the technique will scale up is an open question. Another question is can such 
an approach be made acceptable for application to the development of safety critical 
systems? An affirmative answer to  the second question is more likely if a  way can be found 
to  formalise the assumptions underlying the rule induction system, and the resulting 
theory it produces, in a  manner th a t conforms to  requirements for the development of 
such systems.

Our model has also highhghted the various views th a t can be taken of methods in the 
softwaie design process. An interesting question is: how do engineers claim to be us
ing methods, and are these claims consistent with their actions? This is an im portant 
question because companies are increasingly spending large sums of money on “m eth
ods” , typically through investment in training and tools support. In order to  judge the 
wisdom of continued investment, however, they need to evaluate the improvements th a t 
these methods have brought about. If the engineer is not really using the m ethod, or is 
using it in ways not envisaged by management, this judgment may be ill-founded. An 
interdisciplinary research project comprising of computer scientists, psychologists and 
philosophers of science has been proposed to  explore this question, and was short listed 
for funding by the Tri-council. Unfortunately, the proposal was finally rejected on the 
grounds of an insufficiently developed methodology. This highlights a  meta-level of re
search th a t needs to  be done before exploration of some implications of our model can 
be explored. In particular, acceptable methodologies for interdisciplinary research need 
to be devised.

In addition to the numerous research activities th a t could refine and develop our model, 
we could also seek to utilise our model in new ways for curriculum design. Of particular 
interest would be to explore the ramifications of bringing together the theory-building 
view of design, PC T, and a transform ational view of education. We have already noted 
how close these three components are in a  num ber of ways, and an in depth investigation

^In a personal correspondance.
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of the implications of adopting their conjunction might lead to  significant advances in 
technical education. Such an investigation would have to be liberated from short-term  
goals, such as designing a  particular course or scheme, for these would impose too many 
constraints on the process. A suggested starting point would be a detailed discussion of 
the rôle of the designer, carried out in term s of PCT.

We could also attem pt to  find ways of orienting and evaluating design education in 
terms of the constructs being developed. Such psychometric approaches to  job analysis 
are becoming more common, and repertory grid techniques appear to  be useful tools 
in this regard. This opens up an interesting possibility, for such a research programme 
could be linked to the use of grid analysis for requirements capture discussed earlier. Tills 
would truly reconcile software design with education, for the constructs to be developed, 
whether these are to  be educated into m an or designed into machine , become the basis for 
both  processes. This would force us to  ask some very hard (in all senses) questions, such 
as who provides the requirements for education: th a t is, whose constructs are significant, 
and whose constructs prove dominant in the social processes of education and design.
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A p p e n d ix  A

R elated  P ublications

This appendix lists publications by the researcher th a t are related to  this research pro
gramme, together with a brief comment on the rôle they have played.

1. Mathematics and computer science: coming together again?'. Invited presentation 
a t the Standing Conference for Heads of M athematics, Statistics and Computing, 
Scarborough, 1984.

This presentation discussed the approach to  teaching m athem atics th a t the author 
was developing a t Hatfield. It was largely because of the difficulties in defending 
this approach in a rational way tha t this research programme was undertaken.

2. A n  education programme for software engineers: Proceedings of the first British 
software engineering conference, Brighton, 1986. Published by Springer-Verlag. 
Joint authors: J. Jones and R. Shaw.

This paper discusses the design and implementation of the Postgraduate Diploma 
in Software Principles and Practice, and sets the scene for some of the experiments 
described in this thesis.

3. Using OBJ for Concurrency: Invited paper at the BCS-FACS Colloquium on OBJ, 
London, 1986.

This paper discusses the interpretation of algebraic specifications, and attem pts to 
capture laws of interaction within such a paradigm.

4. A paradigm for the development o f distributed systems: proceedings of the 14th, 
IFA C /IFIP workshop on real time programming, Hungary, 1986. Joint authors: 
G. Bull and R. Mitchell

This paper discusses the notion of a  paradigm, and the rôle th a t methods, languages 
and tools play in establishing a paradigm for real time systems. It was the catalyst 
for investigating the work of Kuhn.

5. Future Research Directions: Esprit deliverable for project Peacock, 1986.
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This paper raises many of the questions th a t are still identified as open research 
issues within tliis thesis, but without the benefit of the framework established here 
in which to  phrase them.

6 . Essential Mathematics for Software Engineers: Published by Peter Peregrinus, on 
behalf of the lEE , 1987 Joint Authors: Slater et. al.

This comprises a  set of books and a video, produced as part of an Alvey project. 
The approach taken was not based on theory construction, however, but on a more 
traditional concept of applied m athematics. It was partly in reaction to  this work 
th a t the author set out to  establish explicitly the theory building approach to 
software design.

7. Software Engineering Mathematics: Published by Pitm ans, 1988 (Also published 
by Adison Wesley in the USA, 1989, and in german translation by Springer-Verlag 
in 1990) Joint author: J  Woodcock

This textbook was w ritten explicitly to support the teaching of the theory building 
view of design.

8 . Mathematics not method: presentation at the IMA conference on software engi
neering m athematics, London, 1988. Joint author: R. Mitchell

This paper was structured around the theory building view, and illustrated the use 
of partial theory presentations in specifications.

9. Selfconscious or unselfconscious design: Jounal of Information Technology, 5(1), 
March 1990.

This paper discusses the two paradigms established by selfconscious and unselfcon- 
scious design, and their implications for teachers.

1 0 . Putting mathematics to use: invited chapter in “Managing Complexity in Software 
Engineering, Edited by R. J. Mitchell, Published by Peter Peregrinus, 1990.

This paper puts forward the theory building view to an industrial audience.

1 1 . Mathematics for software engineers: proceedings of m athem atics in a changing 
culture, April, 1990, Glasgow College.

This paper discusses the Hatfield approach to formal m ethods in the context of 
changes to  perceptions of m athematics generally. It also makes explicit the theory 
building approach.

12. Humane mathematics for software engineers: presented a t the lE E  colloquium on 
software engineering education, February, 1991. Joint author: J. Brown

This paper presents experiences of adopting the theory building approach with 
HND students.

13. Logic and Correctness Proofs: invited chapter in the Software engineering reference 
book, published by Butterw orths, 1991.
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This chapter discusses the rôle of correctness proofs in establishing fitness for pur
pose, and provides a  background to  the task of carrying out such proofs.

14. Structuring Specifications: subm itted to  Formal Aspects of Com puter Science, 
1991. Joint author: R. Mitchell

This paper discusses the implications of specification structure on system main
tainability, and proposes an alternative style for Z specifications.

15. The mathematical revolution inspired by computing: Editing of the proceedings of 
the conference, published by OUP, 1991,Co-editor: J . Johnson

This conference raised many of the issues covered in this thesis, but from the 
m athem atician’s perspective.
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